总的来说,求导数要比求原函数简单,这是因为导数是一个简单的极限表达式:
不论f(x)有多复杂,只要f(x)始终是初等数学函数,你又有足够耐性的话,那么代入进去总是能求得出来的,但是实际中没人会这么做。因为哪怕是最基本的初等数学函数,利用上式计算就已经很复杂了。再对他们进行复合或者四则运算的话,其计算过程就更繁琐了。所以一般教材的做法都是先把所有基本初等函数导数计算出来,再给出导数四则运算和复合的法则,然后就对给定函数进行分析分解,直至每一步都是基本初等函数之后,就代入基本初等函数导数公式中求得结果。
其中,有些基本初等函数也不会直接用定义来求,而是将其拆解为其它的基本初等函数再进行计算。例如已经运用定义算出了正余弦函数的导数:
那么在求正切函数的导数时,就不再用定义了,而以除法的导数代之:
接着,除法导数的运算法则如下:
代入一下,即可得到
有了正余弦导数公式后,正切的求导过程可谓相当简单。
然后,正余弦函数的导数用定义来算也不难,这里就不给出了,教材一大把。原因在于弦函数在初等数学领域属于最简单的三角函数,两角和差公式比其它三角函数简单得多,然后还能轻松推导出更实用的积化和差以及和差化积公式。教材上给出的正弦导数计算过程,就是通过和差化积公式把分子部分变成一个项,然后就可以往下化简了。
但正切函数就没有所谓的和差化积公式了,其两角和差也比弦函数复杂得多:
正弦的两角和则不包含分母:
代入到导数定义的公式中,显然后者更容易处理。
但喜欢钻牛角尖的我,就非要把那个复杂的给代进去玩玩:
这种繁分数,看着真的很不舒服,但既然开始了,那就继续下去吧。先对分子中的分母进行通分。
这下,我们可以把一些能代入Δx=0的项给代一下,分母里的1-tanxtan△x代入后得到1,可以代入,而△x=0则先不能代入。
1+tan²x跟△x无关,不用管了,可以直接提取出去。于是得到
这里不得不提一个套路,就是基于夹逼定义的骚极限:
我们把正切分解为正弦和余弦,其中余弦函数在x趋于0的时候等于1,于是有
可见,结果跟用除法导数算出来的完全一样!
上篇我是说打算拿反正弦函数来展示的,但是我感觉反正弦太复杂了,大家可能一时半刻接受不来,所以我先拿了个相对简单的正切函数来进行过渡。由于两角和的正切仍然可以展开,且展开的结果只是因为有个稍复杂的分母而使得演算略繁琐。但只要有足够耐性,有一定的做题功底,那么用定义求正切函数导数还是比较轻松的。
而反三角函数就不是那么好伺候了。因为这个玩意儿,是没有公式可以给你展开或者跟其它的项进行合并。
那么,喜欢钻牛角尖的我最后是如何把这东西给拿下来的呢?且听下回分解!