【知识补充】多头注意力和交叉注意力的区别

多头注意力和交叉注意力的区别

多头注意力和交叉注意力都是在自注意力的基础上发展而来的,它们的主要区别在于注意力矩阵的计算方式不同。

转载☞添加链接描述

多头注意力机制

多头注意力(Multi-Head Attention)是一种基于自注意力机制( self-attentionQ)的改进方法。自注意力是一种能够计算出输入序列中每个位置的权重,因此可以很好地处理序列中长距离依赖关系的问题。但在应用中,可能存在多个不同的关注点,因此就需要多个自注意力机制来处理不同的关注点。多头注意力就是在一个输入序列上使用多个自注意力机制,得到多组注意力结果,然后将这些结果进行拼接和线性投影得到最终输出。

多头注意力的优点是能够处理多个关注点的问题,可以较好地处理复杂语义关系。

多头注意力机制在计算注意力矩阵时,将输入张量 拆分成h 个子张量,每个子张量都是以不同的方式学习到的注意力信息。然后,对于每个子张量,都执行一次自注意力计算,得到一个输出张量 O。最后,将h 个输出张量拼接在一起,得到最终的输出张量 O
在这里插入图片描述

交叉注意力机制

交叉注意力(Cross-Attention)则是在两个不同序列上计算注意力,用于处理两个序列之间的语义关系。例如,在翻译任务中,需要将源语言句子和目标语言句子进行对齐,就需要使用交叉注意力来计算两个句子之间的注意力权重。

在这里插入图片描述

代码

import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiHeadAttention(nn.Module):
    def __init__(self, in_dim, k_dim, v_dim, num_heads):
        super(MultiHeadAttention, self).__init__()
        self.num_heads = num_heads
        self.k_dim = k_dim
        self.v_dim = v_dim
        
        # 定义线性投影层,用于将输入变换到多头注意力空间
        self.proj_q = nn.Linear(in_dim, k_dim * num_heads, bias=False)
        self.proj_k = nn.Linear(in_dim, k_dim * num_heads, bias=False)
        self.proj_v = nn.Linear(in_dim, v_dim * num_heads, bias=False)
		# 定义多头注意力的线性输出层
        self.proj_o = nn.Linear(v_dim * num_heads, in_dim)
        
    def forward(self, x, mask=None):
        batch_size, seq_len, in_dim = x.size()
        # 对输入进行线性投影, 将每个头的查询、键、值进行切分和拼接
        q = self.proj_q(x).view(batch_size, seq_len, self.num_heads, self.k_dim).permute(0, 2, 1, 3)
        k = self.proj_k(x).view(batch_size, seq_len, self.num_heads, self.k_dim).permute(0, 2, 3, 1)
        v = self.proj_v(x).view(batch_size, seq_len, self.num_heads, self.v_dim).permute(0, 2, 1, 3)
        # 计算注意力权重和输出结果
        attn = torch.matmul(q, k) / self.k_dim**0.5   # 注意力得分
        
        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)
        
        attn = F.softmax(attn, dim=-1)   # 注意力权重参数
        output = torch.matmul(attn, v).permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len, -1)   # 输出结果
        # 对多头注意力输出进行线性变换和输出
        output = self.proj_o(output)
        
        return output

class CrossAttention(nn.Module):
    def __init__(self, in_dim1, in_dim2, k_dim, v_dim, num_heads):
        super(CrossAttention, self).__init__()
        self.num_heads = num_heads
        self.k_dim = k_dim
        self.v_dim = v_dim
        
        self.proj_q1 = nn.Linear(in_dim1, k_dim * num_heads, bias=False)
        self.proj_k2 = nn.Linear(in_dim2, k_dim * num_heads, bias=False)
        self.proj_v2 = nn.Linear(in_dim2, v_dim * num_heads, bias=False)
        self.proj_o = nn.Linear(v_dim * num_heads, in_dim1)
        
    def forward(self, x1, x2, mask=None):
        batch_size, seq_len1, in_dim1 = x1.size()
        seq_len2 = x2.size(1)
        
        q1 = self.proj_q1(x1).view(batch_size, seq_len1, self.num_heads, self.k_dim).permute(0, 2, 1, 3)
        k2 = self.proj_k2(x2).view(batch_size, seq_len2, self.num_heads, self.k_dim).permute(0, 2, 3, 1)
        v2 = self.proj_v2(x2).view(batch_size, seq_len2, self.num_heads, self.v_dim).permute(0, 2, 1, 3)
        
        attn = torch.matmul(q1, k2) / self.k_dim**0.5
        
        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)
        
        attn = F.softmax(attn, dim=-1)
        output = torch.matmul(attn, v2).permute(0, 2, 1, 3).contiguous().view(batch_size, seq_len1, -1)
        output = self.proj_o(output)
        
        return output

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值