深度学习P2周:CIFAR10彩色图片识别

P2周:CIFAR10彩色图片识别

环境准备:

Python:3.12
编译器:jupyter notebook
深度学习环境:Pytorch(GPU)

一、前期设置

1、设置GPU

代码实现:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")#使用CPU

device

我的显卡是:Nvdia 4070Ti super
代码输出结果:

device(type=‘cuda’)

2、导入数据

使用torchvision中的dataset下载CIFAR10数据采集,并划分好训练集和测试集。并使用dataloader加载数据,并设置好基本的batch_size。

torchvision 是 PyTorch 深度学习框架的官方视觉工具包,专门为计算机视觉任务设计。它提供了一系列功能,主要包括:
数据集加载器 (torchvision.datasets):支持常用的计算机视觉数据集,如 ImageNet、CIFAR10、MNIST等,方便用户下载和加载数据。

预训练模型 (torchvision.models):包含在大规模数据集上训练的模型,如ResNet、AlexNet、VGG、Inception 等,用户可以直接使用这些模型进行迁移学习或微调。

数据转换和处理(torchvision.transforms):提供了一系列对图像进行预处理和数据增强的操作,如裁剪、缩放、翻转、归一化等,简化了数据预处理流程。

实用工具 (torchvision.utils):包括一些辅助函数,如将一批图像张量保存为图像网格,方便可视化。

代码实现:

train_ds = torchvision.datasets.CIFAR10('.data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('.data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

代码输出:
在这里插入图片描述
接下来设置batch_size。
代码实现:

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)#随机打乱

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)#测试集不需要打乱

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

其中,iter()函数用于创建一个可迭代对象的迭代器,他的作用是将train_dl转换为一个迭代器,使其可以使用next()函数逐个获取批次数据。而next()函数用于从迭代器中获取下一项,在这里会从train_dl的迭代器中获取下一批的数据。

3、数据可视化

和上周一样,我们同样先对一组数据进行可视化。
代码实现:

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 进行轴变换
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

代码输出:
在这里插入图片描述
在这里transpose()函数用于对张量的维度进行重排,即改变维度的顺序。在处理图像数据的时候,经常需要在不用的数据格式之间转换。(高度,宽度,通道数)HWC格式常用于图像的读取与显示。而(通道数,高度,宽度)CHW格式是pytorch模型通常要求的输入格式。

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用语提取图片的特征,分类网络用与将图片进行分类。

我们先进行代码实现,随后我们在进行分析。

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

代码输出:
在这里插入图片描述
第一层卷积层,输入通道数为3,设置输出通道数为64,卷积核的大小为3,输入层的数据格式为(3,32,32),经过第一层卷积应该变为(64,32-3+1=30,30)。随后经过一层池化层,池化层大小为2,所以数据变为(64,15,15)。随后再次经过卷积,输入通道64,输出通道也为64,所以数据格式变为(64,13,13),再次经过池化层,数据变为(64,6,6),随后第三个卷积层,数据变为(128,4,4),再次经过池化层厚变为(128,2,2)。随后经过Flatten层变为1维的数据,总共有12822 = 512个特征,随后经过全连接层变为256个特征,再经过全连接层到输出10个分类的层。

三、训练模型

1、设置超参数

设置超参数,包括损失函数、学习率、优化函数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate) #优化方法为SGD

2、编写训练函数

  1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

  1. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

  1. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        opt.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        opt.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

pred.argmax(1)的意思是每行取最大值的索引值。(pred.argmax(1) == y).type(torch.float)作用是将布尔张量转换为浮点型张量,便于后续计算。True为1,False转换为0.0。

3、编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

  1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。

  1. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

代码实现:

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

代码输出:
在这里插入图片描述

4、结果可视化

代码:

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

代码输出:
在这里插入图片描述

四、总结与讨论

  • 我们主要完成了对CIFAR10彩色图片的识别与分类问题。
  • 使用了简单CNN网络实现,网络结构图如下所示
    在这里插入图片描述
  • 总而言之,对于一个网络来说,先进行正向计算得到loss,然后反向计算得到梯度grad,随后更新权重,直到训练完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值