第二周学习:第P2周:CIFAR10彩色图片识别

该篇文章详细介绍了在PyTorch环境下,如何使用CIFAR10数据集训练一个简单的卷积神经网络(CNN),包括数据加载、网络构建、超参数设置、训练与测试过程,以及可视化训练结果。
摘要由CSDN通过智能技术生成

🍨 本文为🔗365天深度学习训练营中的学习记录博客
🍖 原作者:K同学啊 | 接辅导、项目定制
🚀 文章来源:K同学的学习圈子

我的环境:pytorch环境下的juper notebook

python版本:3.6

一、 前期准备

1. 设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

我的电脑有GPU,运行结果

device(type='cuda')

2. 导入数据

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor类型
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

下载数据集和测试集:CIFAR10

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

把数据装进dataloader

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

next(iter(train_dl)) 的作用是获取数据加载器中的下一个批次的数据。返回的结果是一个二元组,第一个元素是图像数据的张量(imgs),第二个元素是标签数据的张量(labels)。

这行代码的目的是用来获取用于训练的一个批次的图像和标签数据,以便后续用于模型的训练过程。

在 PyTorch 中,DataLoader 就是一个可迭代对象,它可以将数据集分成多个 batch,并且每个 batch 的大小可以指定。train_dl 就是一个 DataLoader 对象,通过调用 iter(train_dl) 可以将其转换成一个迭代器对象,这样我们就可以使用 next() 函数逐个获取其中的元素(即每个 batch 的数据)。

3. 数据可视化

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
#plt.show()  如果你使用的是Pycharm编译器,请加上这行代码

二、构建简单的CNN网络

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载模型

model = Model().to(device)

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

我的结果:

五.个人具体收获和个人总结

对卷积层与池化层的计算原理进行理解和推导。本代码所用的卷积池化结构如下

  # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)

卷积输出的shape公式如下:

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

stride=1, padding=0, dilation=1, groups=1, bias=True,这些是默认参数

self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3

代码中的in_channels, out_channels, kernel_size自己设定,其他如果不设定即被认为是默认值

本文代码中输入通道设为了3,输出通道设为了64,卷积核大小为3x3

图像一开始是(3,32,32)的shape

经过卷积层1(self.conv1)o=(32-3+2x0)/1+1=30

所以输出通道是自己设的64,图片大小为30x30

即(64,30,30)

下一步是经过池化层一

池化输出的shape公式如下:

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False这些是默认参数

stride:窗口的步幅,默认值为kernel_size(核的大小) ,(本案例中的值 = 2)

本文中代码 self.pool1 = nn.MaxPool2d(kernel_size=2)  ,设置了kernel_size:最大的窗口大小,(本案例中的值 = 2)

Hout=(30+0-1x(2-1)-1)/2+1=15

Wout=(30+0-1x1-1)/2+1=15

所以最终的输出为:(64,15,15), 其中的 64 的值沿用卷积层一产生的通道数.

接下来同理:

经过卷积层2

 self.conv2 = nn.Conv2d(64, 64, kernel_size=3)

o=(15-3+0)/1+1=13,输出通道数是conv2自己设的64

最终输出即为(64,13,13)


经过池化层2

  self.pool2 = nn.MaxPool2d(kernel_size=2) 

Hout=Wout=(13+0-1x(2-1)-1)/2+1=5.5+1=6.5

注意此时不是整数,池化操作向下取整,即取6

最终输出即为(64,6,6)


经过卷积层3

self.conv3 = nn.Conv2d(64, 128, kernel_size=3)

o=(6-3+0)/1+1=4

最终输出即为(128,4,4)


经过池化层3

 self.pool3 = nn.MaxPool2d(kernel_size=2) 

Hout=Wout=(4+0-1x(2-1)-1)/2+1=2

最终输出即为(128,2,2)


总结:下面的网络数据shape变化过程为:

3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值