LPD-Net学习笔记
LPD-Net指 LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis 文中所指LPD-Net。
本文主要依据网络结构图简单解释每个模块的作用。
Adaptive Local Feature Extraction
文中提到大尺度场景点云中每个点局部分布是不均匀的(可以理解为有的地方点密集、有的地方点稀疏)因此在使用KNN构建邻域图时需要自适应的选择K值,这样才能更好的提取点云特征。这里文章引用了Semantic 3d scene interpretation: a framework combining optimal neighborhood size selection with relevant features中的理论。利用公式Ei = -Li ln Li - Pi ln Pi - Si ln Si 来描述局部三维结构的不可预测性,从而可以选择使 Ei 取最小值时K的值作为为每个点构建邻域图时KNN算法的K值,所以这个模块中K值因点而异。
在构建完邻域图时将三维坐标和10个人工设置的特征串联输入mlp