一、贝叶斯定理
贝叶斯分类是一类分类算法的总称,这类算法以贝叶斯定理为基础,故统称为贝叶斯分类。贝叶斯定理解决了现实生活中经常遇到的问题:已知某条件概率,如何得到事件交换后的概率,即在已知P(A|B)的情况下求得P(B|A)。条件概率P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B条件下发生事件A的条件概率。其基本求解公式为:P(A|B)=P(AB)/P(B)。贝叶斯定理:
二、朴素贝叶斯分类的原理
朴素贝叶斯的含义是:朴素——特征条件独立,贝叶斯——基于贝叶斯定理。朴素贝叶斯分类是一种十分简单的分类方法,这种分类的思想真的很朴素:对于给出的待分类项,求解此项条件下各个类别出现的概率,概率最大的类别就认为此项属于该类别。举例来说,在街上看到一个黑人,十之八九猜测他是来自非洲,为什么呢?因为黑人里非洲人的比例最高,当然他也有可能是美洲人或亚洲人,但在没有其他可用信息的条件下,会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。朴素贝叶斯分类的定义
1、设 为一个待分类项,每个a是x的一个特征属性。
2、类别集合
3、计算
4、如果 ,则
现在的关键是如何计算第3步中的各条