机器学习之朴素贝叶斯Naïve Bayes (一)

这篇博客介绍了基于贝叶斯定理的机器学习算法——朴素贝叶斯分类。首先讲解了贝叶斯定理的基本概念和公式,接着详细阐述了朴素贝叶斯分类的原理,并探讨了多项式、高斯和伯努利三种不同的模型参数估计方法。此外,还概述了朴素贝叶斯的分类流程和算法实现过程,最后进行了算法总结。
摘要由CSDN通过智能技术生成

一、贝叶斯定理

        贝叶斯分类是一类分类算法的总称,这类算法以贝叶斯定理为基础,故统称为贝叶斯分类。贝叶斯定理解决了现实生活中经常遇到的问题:已知某条件概率,如何得到事件交换后的概率,即在已知P(A|B)的情况下求得P(B|A)。条件概率P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B条件下发生事件A的条件概率。其基本求解公式为:P(A|B)=P(AB)/P(B)。贝叶斯定理:


        贝叶斯的主要思想可以概括为:先验概率+数据=后验概率。贝叶斯定理换个表达形式:

二、朴素贝叶斯分类的原理

        朴素贝叶斯的含义是:朴素——特征条件独立,贝叶斯——基于贝叶斯定理。朴素贝叶斯分类是一种十分简单的分类方法,这种分类的思想真的很朴素:对于给出的待分类项,求解此项条件下各个类别出现的概率,概率最大的类别就认为此项属于该类别。举例来说,在街上看到一个黑人,十之八九猜测他是来自非洲,为什么呢?因为黑人里非洲人的比例最高,当然他也有可能是美洲人或亚洲人,但在没有其他可用信息的条件下,会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
朴素贝叶斯分类的定义
1、设 为一个待分类项,每个a是x的一个特征属性。
2、类别集合
3、计算
4、如果 ,则
        现在的关键是如何计算第3步中的各条
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值