基于选择性集成的机场噪声预测模型
机场噪声预测对于机场和航班的设计至关重要。支持向量机(SVM)已被证明具有良好的预测能力,但监测数据中的异常值会降低其预测性能。为解决这一问题,本文提出了基于局部离群因子的模糊支持向量回归(LOF - FSVR)算法,并在此基础上构建了选择性集成预测模型。
1. SVR与FSVR
- 支持向量回归(SVR)
- 当支持向量机用于解决回归问题时,称为支持向量回归(SVR)。对于训练集 (T = {(x_i, y_i)|x_i \in R^n, y_i \in R, i = 1, 2, \cdots, l}),SVR首先通过非线性映射函数 (\varphi) 将输入空间映射到高维空间,然后在高维空间进行线性回归,该问题可转化为约束优化问题:
[
\begin{align }
\min&\quad\frac{1}{2} |w|^2 + C \sum_{i = 1}^{l} (\zeta_i^- + \zeta_i^+)\
\text{s.t.}&\quad\begin{cases}
y_i - (w \cdot \varphi(x_i)) - b \leq \varepsilon + \zeta_i^-\
(w \cdot \varphi(x_i)) + b - y_i \leq \varepsilon + \zeta_i^+\
\zeta_i^-, \zeta_i^+ \geq 0, \quad i = 1, 2, \cdots, l
\end{cases}
\end{align
- 当支持向量机用于解决回归问题时,称为支持向量回归(SVR)。对于训练集 (T = {(x_i, y_i)|x_i \in R^n, y_i \in R, i = 1, 2, \cdots, l}),SVR首先通过非线性映射函数 (\varphi) 将输入空间映射到高维空间,然后在高维空间进行线性回归,该问题可转化为约束优化问题:
超级会员免费看
订阅专栏 解锁全文
1879

被折叠的 条评论
为什么被折叠?



