✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:随着能源结构转型和分布式能源技术的快速发展,微网作为一种重要的能源供给模式,在提高能源利用效率、增强电网可靠性以及促进可再生能源消纳等方面发挥着日益重要的作用。然而,微网的运行面临诸多挑战,包括分布式能源出力波动带来的不确定性、用户用电需求的变化以及电力市场环境的复杂性。本文以提升微网运营效益为目标,提出一种基于合作型Stackelberg博弈的微网运行策略,该策略充分考虑差别定价机制和风险管理措施。通过构建微网运营商和用户之间的主从博弈模型,实现供需双方利益最大化,并引入风险价值(Value-at-Risk, VaR)作为风险度量指标,优化微网运行策略,提高系统抗风险能力。
一、引言
传统的集中式电力系统面临着能源危机和环境污染的双重挑战。分布式能源(Distributed Generation, DG)的蓬勃发展,为解决这些问题提供了新的思路。微网作为一种由分布式电源、储能系统、负荷和控制设备组成的局部电力网络,能够实现能源的本地化生产和消费,降低能源传输损耗,提高能源利用效率,并支持可再生能源的消纳。然而,DG的间歇性和波动性给微网的稳定运行带来了新的挑战。同时,用户用电行为的复杂性和多样性,以及电力市场价格的波动性,都对微网的运营提出了更高的要求。
为了提高微网的经济性和可靠性,需要研究一种高效的运行策略,该策略不仅能够充分利用DG资源,满足用户需求,还能应对市场风险和不确定性。差别定价策略能够根据不同时段、不同用户的用电需求和DG出力情况,制定不同的电价,从而引导用户改变用电行为,实现供需平衡。风险管理措施则能够有效降低DG出力波动和市场价格波动带来的负面影响,保障微网的稳定运行。
二、文献综述
目前,国内外学者对微网运行策略进行了大量的研究。在经济调度方面,许多研究集中于优化DG的出力,降低运行成本,提高能源利用效率。例如,一些研究利用遗传算法、粒子群算法等优化算法,实现DG的最优调度。另一些研究则考虑了储能系统的作用,通过优化储能充放电策略,平滑DG出力波动,提高系统稳定性。
在差别定价方面,也有一些研究探讨了其在微网中的应用。动态定价能够根据实时供需情况调整电价,引导用户降低高峰时段用电需求,提高系统运行效率。分时电价则能够根据不同时段的用电需求制定不同的电价,鼓励用户将用电负荷转移到低谷时段。
在风险管理方面,常见的风险度量指标包括方差、标准差、条件风险价值(Conditional Value-at-Risk, CVaR)等。一些研究利用VaR和CVaR等指标,对微网的运行风险进行评估,并提出相应的风险规避措施。
Stackelberg博弈理论也被广泛应用于电力市场研究中。该理论描述了具有领导者和跟随者结构的博弈模型,其中领导者先采取行动,跟随者根据领导者的行动做出反应。在微网中,微网运营商可以作为领导者,用户作为跟随者,通过Stackelberg博弈模型,实现供需双方的利益最大化。
尽管现有研究取得了一些成果,但仍然存在一些局限性。首先,很少有研究同时考虑差别定价和风险管理对微网运行的影响。其次,现有研究中,用户通常被视为被动的接受者,没有充分考虑用户的参与和互动。第三,风险度量指标的选择和应用仍有待进一步研究。
三、基于合作型Stackelberg博弈的微网运行策略
本文提出一种基于合作型Stackelberg博弈的微网运行策略,该策略充分考虑差别定价机制和风险管理措施。具体而言,该策略包括以下几个方面:
- 构建Stackelberg博弈模型:
将微网运营商作为领导者,用户作为跟随者,构建主从博弈模型。微网运营商的目标是最大化自身利润,用户的目标是最小化用电成本。
- 差别定价机制:
微网运营商根据DG出力情况、用户用电需求以及市场价格,制定差别电价,包括分时电价、实时电价等,引导用户改变用电行为,实现供需平衡。
- 风险管理措施:
引入VaR作为风险度量指标,量化DG出力波动和市场价格波动带来的风险。微网运营商根据VaR值,调整DG出力计划和储能充放电策略,降低系统风险。
- 合作机制:
为了鼓励用户积极参与微网运行,实现供需双方的互利共赢,引入合作机制。例如,微网运营商可以根据用户的用电贡献,给予一定的奖励或补贴。
具体模型构建如下:
1. 博弈参与者和目标函数:
-
领导者:微网运营商 (Microgrid Operator, MGO)
MGO的目标函数可以表示为:
php
max Σ<sub>t</sub> [p<sub>t</sub> * D<sub>t</sub> - C<sub>DG</sub>(P<sub>DG,t</sub>) - C<sub>ES</sub>(P<sub>ES,t</sub>) - C<sub>grid</sub>(P<sub>grid,t</sub>)]
其中:
-
D<sub>t</sub> 是t时刻的用户总用电量
-
C<sub>DG</sub>(P<sub>DG,t</sub>) 是t时刻DG的发电成本
-
C<sub>ES</sub>(P<sub>ES,t</sub>) 是t时刻储能的运行成本
-
C<sub>grid</sub>(P<sub>grid,t</sub>) 是t时刻从电网购电的成本
-
目标函数:最大化利润
-
决策变量:电价 (p<sub>t</sub>),DG出力 (P<sub>DG,t</sub>),储能出力 (P<sub>ES,t</sub>)
-
约束条件:DG出力上下限,储能充放电功率上下限,电网潮流约束,电价约束等
-
-
跟随者:用户 (Users)
每个用户i的目标函数可以表示为:
lua
min Σ<sub>t</sub> p<sub>t</sub> * d<sub>i,t</sub>
其中:
-
d<sub>i,t</sub> 是用户i在t时刻的用电量
-
目标函数:最小化用电成本
-
决策变量:用电量 (d<sub>i,t</sub>) (i 表示第i个用户,t 表示时刻)
-
约束条件:用户用电需求上下限,用户响应价格弹性等
-
2. Stackelberg 博弈模型:
MGO作为领导者,首先制定电价策略和DG、储能出力计划。用户作为跟随者,根据MGO的电价策略,调整自身的用电行为,使自身用电成本最小。MGO在制定电价策略时,需要考虑到用户的用电行为,预测用户的反应,从而制定最优的电价策略。
3. 风险管理:
引入VaR指标来衡量微网运行的风险。VaR是指在给定的置信水平下,微网利润可能遭受的最大损失。MGO的目标是在保证利润最大化的前提下,控制VaR值在可接受范围内。
VaR的计算可以采用历史模拟法、蒙特卡洛模拟法等。本文建议采用蒙特卡洛模拟法,因为它可以更灵活地处理各种不确定性。
4. 合作机制:
为了鼓励用户积极参与微网运行,实现供需双方的互利共赢,引入合作机制。例如,MGO可以根据用户的用电贡献,给予一定的奖励或补贴。合作机制的具体形式可以根据实际情况进行设计。例如,可以根据用户参与需求响应的程度,给予不同程度的奖励。
四、算法设计与求解
上述Stackelberg博弈模型是一个复杂的优化问题,需要设计高效的算法进行求解。本文建议采用以下算法:
- 内层优化:
用户用电优化问题通常是凸优化问题,可以采用线性规划或二次规划等算法进行求解。
- 外层优化:
MGO的优化问题是一个非线性优化问题,可以采用遗传算法、粒子群算法等智能优化算法进行求解。
- 合作机制:
合作机制的设计需要考虑到公平性和激励性,可以采用Shapley值等合作博弈理论进行设计。
具体步骤如下:
- 初始化:
初始化MGO的电价策略、DG出力计划、储能充放电计划以及算法参数。
- 内层优化:
根据MGO的电价策略,用户进行用电优化,得到用户的最优用电量。
- 外层优化:
根据用户的用电量,MGO进行优化,更新电价策略、DG出力计划和储能充放电计划。
- 风险评估:
计算微网的VaR值。如果VaR值超过可接受范围,则调整DG出力计划和储能充放电策略,降低系统风险。
- 合作机制:
根据用户的用电贡献,给予一定的奖励或补贴。
- 迭代:
重复步骤2-5,直到满足收敛条件。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇