✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
粒子群优化算法(Particle Swarm Optimization, PSO)作为一种模拟鸟群觅食行为的群体智能优化算法,自提出以来便以其原理简单、易于实现、收敛速度快等优点,在优化问题求解领域得到了广泛应用。然而,标准PSO算法在处理复杂优化问题时,容易陷入局部最优解,或者存在收敛精度不高的问题。 为了克服这些缺陷,研究人员提出了多种改进策略,其中基于惯性权重和学习因子动态调整的PSO算法是较为常见且有效的方法之一。本文旨在对一篇关于该改进算法的期刊论文进行复现,并深入分析其改进思路、实验结果及潜在局限性,以期为相关研究提供参考。
首先,我们需要理解标准PSO算法的基本原理。PSO算法将每个可行解视为搜索空间中的一个“粒子”,所有粒子共同构成一个“种群”。每个粒子具有位置和速度两个属性,通过不断地更新自身速度和位置来逼近全局最优解。速度的更新受到三个因素的影响:粒子的自身惯性、粒子自身历史最优位置(pbest)以及种群的历史最优位置(gbest)。
标准PSO算法的速度和位置更新公式如下:
v<sub>i</sub><sup>t+1</sup> = w * v<sub>i</sub><sup>t</sup> + c<sub>1</sub> * rand() * (pbest<sub>i</sub> - x<sub>i</sub><sup>t</sup>) + c<sub>2</sub> * rand() * (gbest - x<sub>i</sub><sup>t</sup>)
x<sub>i</sub><sup>t+1</sup> = x<sub>i</sub><sup>t</sup> + v<sub>i</sub><sup>t+1</sup>
其中,v<sub>i</sub><sup>t</sup> 和 x<sub>i</sub><sup>t</sup> 分别表示第 i 个粒子在第 t 次迭代时的速度和位置;w 为惯性权重,用于平衡算法的全局搜索和局部搜索能力;c<sub>1</sub> 和 c<sub>2</sub> 分别为学习因子,用于控制粒子向自身最优位置和全局最优位置学习的程度;rand() 为[0, 1]之间的随机数;pbest<sub>i</sub> 表示第 i 个粒子至今为止搜索到的最优位置;gbest 表示整个种群至今为止搜索到的最优位置。
在标准PSO算法中,惯性权重 w 和学习因子 c<sub>1</sub> 和 c<sub>2</sub> 通常设置为固定值。然而,固定的参数设置难以适应复杂多变的优化问题。例如,较大的惯性权重有利于全局搜索,但容易错过局部最优解;而较小的惯性权重有利于局部搜索,却可能导致算法陷入局部最优解。类似地,较大的学习因子使得粒子更容易受到自身或全局最优位置的影响,加速收敛,但也容易导致早熟收敛;而较小的学习因子则可能降低收敛速度。
因此,动态调整惯性权重和学习因子成为改进PSO算法的一种有效手段。基于此,许多期刊论文提出了不同的动态调整策略。 通常,动态调整的目标是:在算法初期,强调全局搜索能力,避免陷入局部最优;在算法后期,强调局部搜索能力,提高收敛精度。
常见的动态调整策略包括:
-
线性递减惯性权重 (Linear Decreasing Weight, LDW): 惯性权重 w 随着迭代次数线性递减,从初始值 w<sub>max</sub> 线性下降到 w<sub>min</sub>。这种策略能够有效地平衡全局搜索和局部搜索能力。
w = w<sub>max</sub> - (w<sub>max</sub> - w<sub>min</sub>) * (t / t<sub>max</sub>)
其中,t 为当前迭代次数,t<sub>max</sub> 为最大迭代次数。
-
非线性递减惯性权重: 除了线性递减,还可以使用非线性函数来调整惯性权重,例如指数函数、三角函数等。 这些函数可以根据具体问题调整下降速度,以获得更好的优化效果。
-
自适应惯性权重: 根据粒子的适应度值或其他评价指标,动态地调整每个粒子的惯性权重。 适应度值好的粒子可以分配较小的惯性权重,进行精细搜索;适应度值差的粒子可以分配较大的惯性权重,进行探索。
-
同步动态调整学习因子: 同时调整 c<sub>1</sub> 和 c<sub>2</sub>。通常,在算法初期,c<sub>1</sub> 较大,c<sub>2</sub> 较小,强调个体经验学习;在算法后期,c<sub>1</sub> 较小,c<sub>2</sub> 较大,强调群体经验学习。
-
异步动态调整学习因子: 根据不同的条件,独立地调整 c<sub>1</sub> 和 c<sub>2</sub>。 例如,可以根据粒子的聚集程度来调整学习因子。
复现期刊论文:
在复现期刊论文时,需要仔细阅读论文中的算法描述和实验设置,并根据描述编写相应的代码。 具体步骤如下:
- 阅读论文:
仔细阅读论文,理解算法的改进思路、具体实现方式以及实验设置。 特别关注惯性权重和学习因子的动态调整策略的数学表达式和参数设置。
- 代码实现:
根据论文描述,使用编程语言(如Python、MATLAB等)实现改进的PSO算法。 需要注意代码的可读性和可维护性,并进行充分的测试。
- 实验设置:
按照论文中的实验设置,选择相同的测试函数和参数设置,例如种群规模、最大迭代次数、算法参数等。
- 结果对比:
将复现的算法与标准PSO算法进行比较,并分析实验结果。 比较的指标通常包括:最优值、平均值、标准差、收敛速度等。
- 结果分析:
分析复现结果与论文结果的差异,并尝试解释原因。 如果复现结果与论文结果不一致,需要仔细检查代码和实验设置,并尝试调整参数。
潜在局限性与未来发展方向:
尽管基于惯性权重和学习因子动态调整的PSO算法在一定程度上提高了算法的性能,但仍然存在一些局限性:
- 参数设置的依赖性:
动态调整策略中的参数(例如线性递减的初始值和最终值)仍然需要手动调整,对算法的性能有较大影响。
- 适应性问题:
针对不同的优化问题,可能需要采用不同的动态调整策略,缺乏通用性。
- 复杂性问题:
过于复杂的动态调整策略可能会增加算法的计算复杂度,降低算法的效率。
未来,可以从以下几个方面进一步改进PSO算法:
- 自适应参数控制:
研究更加智能的参数控制方法,例如使用模糊逻辑、神经网络等技术,实现算法参数的自适应调整。
- 混合优化策略:
将PSO算法与其他优化算法(如遗传算法、模拟退火算法等)相结合,充分利用不同算法的优势,提高算法的性能。
- 大规模优化问题:
研究适用于大规模优化问题的PSO算法,例如并行PSO算法、分布式PSO算法等。
- 理论分析:
加强对PSO算法的理论分析,例如收敛性分析、稳定性分析等,为算法的改进提供理论指导。
⛳️ 运行结果
🔗 参考文献
[1] 徐生兵.基于动态调整惯性权重下改进学习因子的粒子群算法[J].信息安全与技术, 2014, 5(004):26-28.DOI:10.3969/j.issn.1674-9456.2014.04.007.
[2] 吴静,罗杨.动态调整惯性权重的粒子群算法优化[J].计算机系统应用, 2019, 28(12):5.DOI:CNKI:SUN:XTYY.0.2019-12-028.
[3] 吴静,罗杨.动态调整惯性权重的粒子群算法优化[J].计算机系统应用, 2019(12).
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇