【控制】移动机器人路径跟踪的设计和仿真模型预测控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

移动机器人在工业自动化、物流配送、医疗服务等领域扮演着日益重要的角色。其核心功能之一便是路径跟踪,即控制机器人按照预先规划的路径精确运动。有效的路径跟踪算法能够确保机器人安全、高效地完成任务。近年来,模型预测控制(Model Predictive Control, MPC)作为一种先进的控制策略,在移动机器人路径跟踪领域展现出巨大的潜力。本文将深入探讨基于MPC的移动机器人路径跟踪的设计与仿真,并分析其优势与挑战。

首先,明确移动机器人路径跟踪问题的定义至关重要。给定一个预定义的路径,路径跟踪的目标是设计一个控制律,使得机器人的实际位置和姿态尽可能地接近目标路径,并最终收敛到路径上。这通常涉及两个关键方面:横向偏差,即机器人距离路径的垂直距离;以及航向角误差,即机器人朝向与路径切线方向之间的角度差。传统的控制方法,如PID控制和基于Lyapunov稳定性的方法,虽然在一定程度上可以实现路径跟踪,但它们往往难以处理非线性、约束和时变系统。

模型预测控制则提供了一个更为灵活和强大的框架来解决这些问题。MPC是一种基于模型预测的优化控制方法,其核心思想是在每一个采样时刻,利用系统模型预测未来一段时间内的系统行为,并求解一个最优控制序列,以最小化预定义的代价函数,同时满足各种约束条件。只有最优控制序列的第一个元素会被实际应用到系统中,然后在下一个采样时刻重复上述过程,形成一个滚动优化的控制策略。

基于MPC的移动机器人路径跟踪设计通常包含以下几个关键步骤:

1. 建立移动机器人动力学模型: 准确的系统模型是MPC有效性的基础。移动机器人的运动学模型和动力学模型都可以用来进行预测。运动学模型相对简单,只考虑了机器人几何约束和速度关系,适用于低速环境和对精度要求不高的场合。动力学模型则更为复杂,考虑了机器人的质量、惯量、摩擦力等因素,能够更精确地描述机器人的运动行为,适用于高速环境和对精度要求较高的场合。常用的模型包括差速驱动模型、阿克曼转向模型等,需要根据具体的机器人平台进行选择和建模。通常需要对模型进行线性化,以便于进行优化求解。

2. 路径参数化和目标轨迹生成: 为了能够使用MPC进行路径跟踪,需要将预定义的路径进行参数化处理。常用的方法包括使用样条曲线、分段线性函数等来表示路径。同时,还需要生成一个目标轨迹,即机器人需要在未来一段时间内达到的位置和姿态序列。目标轨迹的生成可以基于路径上的投影点,也可以根据预设的速度剖面进行计算。

3. 定义代价函数: 代价函数是MPC优化的目标函数,用于评估控制效果。一个典型的代价函数通常包含三部分:状态误差项、控制量项和约束项。状态误差项用于惩罚机器人与目标轨迹之间的偏差,控制量项用于限制控制量的幅度,约束项则用于保证系统的各种物理约束和安全约束。例如,可以惩罚横向偏差和航向角误差,限制机器人的线速度和角速度,并保证机器人不会碰撞到障碍物。代价函数的权重系数需要根据实际情况进行调整,以达到最佳的控制效果。

4. 构建约束条件: 约束条件是MPC优化过程中需要满足的条件。约束条件可以包括状态约束、控制约束和输出约束。状态约束限制了机器人的状态变量的范围,例如限制机器人的位置和姿态在一定范围内。控制约束限制了控制量的范围,例如限制机器人的线速度和角速度在一定范围内。输出约束限制了系统的输出变量的范围,例如限制机器人与障碍物之间的最小距离。

5. 优化求解: 在每个采样时刻,MPC控制器都需要求解一个优化问题,以获得最优的控制序列。优化问题的求解可以使用各种数值优化算法,例如二次规划(Quadratic Programming, QP)、线性规划(Linear Programming, LP)和非线性规划(Nonlinear Programming, NLP)。选择合适的优化算法需要考虑问题的规模、复杂度和实时性要求。对于线性系统和凸优化问题,可以使用QP求解器快速有效地获得最优解。对于非线性系统和非凸优化问题,则需要使用更为复杂的NLP求解器,但求解时间也会相应增加。

6. 滚动优化: MPC控制器采用滚动优化的策略。在每个采样时刻,控制器使用系统模型预测未来一段时间内的系统行为,并求解一个最优控制序列。只有最优控制序列的第一个元素会被实际应用到系统中,然后在下一个采样时刻重复上述过程。这种滚动优化的策略可以有效地适应系统的不确定性和时变性。

在完成MPC控制器的设计之后,需要对其进行仿真验证,以评估其性能。仿真环境可以使用各种机器人仿真软件,例如ROS(Robot Operating System)、Gazebo、V-REP等。仿真验证可以考察MPC控制器在不同路径、不同速度和不同环境下的性能,例如路径跟踪精度、收敛速度、鲁棒性等。

基于MPC的移动机器人路径跟踪具有以下几个显著优势:

  • 能够处理非线性系统:

     MPC可以处理非线性系统,而不需要进行复杂的线性化处理。这使得MPC能够更准确地描述机器人的运动行为,提高控制精度。

  • 能够处理约束:

     MPC可以显式地考虑各种约束条件,例如状态约束、控制约束和输出约束。这可以有效地保证机器人的安全性和可行性。

  • 能够进行优化控制:

     MPC通过优化求解,可以获得最优的控制序列。这可以提高控制性能,例如路径跟踪精度和收敛速度。

  • 具有良好的鲁棒性:

     MPC采用滚动优化的策略,可以有效地适应系统的不确定性和时变性,具有良好的鲁棒性。

然而,基于MPC的移动机器人路径跟踪也面临着一些挑战:

  • 模型精度要求高:

     MPC的性能依赖于系统模型的精度。如果模型与实际系统之间存在较大的误差,则MPC的性能会受到影响。因此,需要建立准确的系统模型,并进行参数辨识。

  • 计算复杂度高:

     MPC需要在每个采样时刻求解一个优化问题,计算复杂度较高。这对于实时性要求较高的应用场景是一个挑战。需要选择合适的优化算法,并对MPC控制器进行优化,以提高计算效率。

  • 参数整定困难:

     MPC控制器包含多个参数,例如代价函数的权重系数、预测时域和控制时域。参数的整定需要根据实际情况进行调整,较为困难。可以使用各种优化算法和自适应控制方法来自动整定参数。

  • 稳定性分析复杂:

     MPC的稳定性分析较为复杂。需要采用各种理论方法来保证MPC控制器的稳定性。

为了克服这些挑战,研究者们提出了许多改进的MPC算法,例如:

  • 鲁棒MPC(Robust MPC):

     考虑了系统的不确定性,能够在存在模型误差和外部干扰的情况下保证系统的稳定性。

  • 自适应MPC(Adaptive MPC):

     能够根据系统的实际情况自适应地调整MPC控制器的参数。

  • 显式MPC(Explicit MPC):

     将MPC的优化问题离线求解,得到一个分段仿射的控制律,从而大大降低了在线计算复杂度。

  • 分布式MPC(Distributed MPC):

     将一个复杂的MPC问题分解为多个子问题,分别由多个控制器进行求解,从而提高计算效率。

⛳️ 运行结果

🔗 参考文献

[1] 徐昕.增强学习及其在移动机器人导航与控制中的应用研究[D].国防科学技术大学,2002.DOI:10.7666/d.y480233.

[2] 陈勇,刘哲,乔健,等.重载轮式移动机器人路径跟踪滑模预测控制[J].四川兵工学报, 2021, 042(008):214-220.

[3] 白国星,刘丽,孟宇,等.基于非线性模型预测控制的移动机器人实时路径跟踪[J].农业机械学报, 2020, 51(9):7.DOI:10.6041/j.issn.1000-1298.2020.09.006.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

### 移动机器人运动学建模的方法 #### 定义与概述 移动机器人的运动学建模旨在描述机器人如何通过其内部机制实现位移。这涉及到将输入命令转换成实际的空间位置变化。对于不同的物理结构,存在多种类型的运动模型,如独轮车、自行车、差动驱动以及阿克曼转向车型等[^1]。 #### 基础概念 - **状态表示**:通常采用的状态向量包括线速度\(v\) 角速度\(\omega\) ,用于表征瞬时运动特性。 - **坐标系设定**:建立世界坐标系局部车身坐标系之间的关系是构建运动方程的基础之一。 #### 差分驱动型实例分析 以常见的两轮差分驱动为例,假设左右两侧分别有独立电机控制,则可以得到如下简化形式的速度表达式: \[ \begin{cases} v_x = R (\dot{\theta}_r+\dot{\theta}_l)/2 \\ v_y=0\\ w=(R/L)(\dot{\theta}_r-\dot{\theta}_l)\end{cases}\] 其中 \(L\) 表示轴距宽度;\(R\) 是轮胎半径;下标 _r, l 分别指代右侧左侧参数;而上标的点号代表时间导数操作符。\(^{[1]}\) ```matlab % MATLAB代码片段展示简单的双轮差速驱动仿真 function simulateDifferentialDrive() % 参数初始化 L = 0.5; % 轴距长度 (meters) R = 0.1; % 轮胎半径 (meters) dt = 0.01; tspan = linspace(0, 10*pi, round(1/dt)); theta_l_dot = sin(tspan); theta_r_dot = cos(tspan); vx = zeros(size(tspan)); vy=zeros(size(tspan)); omega=zeros(size(tspan)); for i=1:length(tspan)-1 vx(i) = R * (theta_r_dot(i)+theta_l_dot(i))/2 ; omega(i)=(R/L)*(theta_r_dot(i)-theta_l_dot(i)); end plot(vx,'b', 'LineWidth', 1.5); hold on; plot(omega,'r','LineWidth', 1.5); legend('Linear Velocity', 'Angular Velocity'); xlabel('Time Steps'); ylabel('Velocities'); end ``` 此段程序展示了基于给定的时间序列内左轮右轮转速来计算对应的前进速度与旋转速率的变化趋势图。 #### 复合系统的扩展应用案例 当涉及更复杂的系统组合时——比如带有机械臂的复合移动平台——则需进一步引入额外维度上的自由度考量。例如,在研究由四轮底盘加上多关节手臂构成的整体架构中,不仅要关注地面行驶部分的动力学行为,还需兼顾空中作业装置的动作协调性问题[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值