【信号处理】时频分析及同步挤压变换研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时频分析作为一种强有力的工具,在分析非平稳信号方面发挥着至关重要的作用。传统的傅里叶变换能够将信号分解成不同频率的正弦波的叠加,但缺乏时间分辨率,无法捕捉信号频率随时间变化的细节。因此,时频分析应运而生,它能够同时提供信号在时间和频率上的信息,从而为理解和分析复杂的非平稳信号提供了全新的视角。本文将深入探讨时频分析的基本原理,重点介绍短时傅里叶变换、小波变换等常用方法,并详细研究近年来备受关注的同步挤压变换(Synchrosqueezing Transform, SST)及其在信号处理领域的应用。

时频分析的基本原理与方法

时频分析的核心思想是将信号在时域和频域进行联合分析,即在时间维度上考察信号的频率成分,以及频率成分随时间的变化。这种分析方法能够有效处理诸如语音信号、生物医学信号、机械振动信号等典型的非平稳信号。

1. 短时傅里叶变换 (Short-Time Fourier Transform, STFT)

STFT是最早也是最常用的时频分析方法之一。它通过选择一个随时间移动的窗口函数,对窗口内的信号进行傅里叶变换,从而获得该时刻的频谱信息。随着窗口在时间轴上移动,可以得到一个二维的时频分布,即时频图 (Spectrogram)。

STFT 的优点是原理简单,计算效率高。然而,STFT 也存在固有的缺陷,即时间和频率分辨率之间存在着固有的折衷关系。根据海森堡测不准原理,时间窗口越窄,时间分辨率越高,但频率分辨率会降低;反之,时间窗口越宽,频率分辨率越高,但时间分辨率会降低。这种折衷关系限制了 STFT 在处理复杂非平稳信号时的性能。

2. 小波变换 (Wavelet Transform, WT)

小波变换是另一种重要的时频分析方法,它采用一组被称为小波的函数作为基函数,通过对原始信号进行分解和重构,得到信号在不同尺度上的信息。与STFT不同的是,小波变换采用自适应的窗口函数,在高频部分使用较窄的窗口,在低频部分使用较宽的窗口,从而能够更好地平衡时间和频率分辨率。

小波变换可以分为连续小波变换 (Continuous Wavelet Transform, CWT) 和离散小波变换 (Discrete Wavelet Transform, DWT)。CWT 具有更高的分辨率,但计算量较大;DWT 则更适合于实时处理和信号压缩。

3. 其他时频分析方法

除了 STFT 和小波变换之外,还有许多其他的时频分析方法,例如 Wigner-Ville 分布 (Wigner-Ville Distribution, WVD)、Cohen 类分布 (Cohen's Class Distribution) 等。WVD 具有理想的时频分辨率,但容易受到交叉项的干扰。Cohen 类分布则通过引入核函数来减少交叉项的影响,但也会降低时频分辨率。

同步挤压变换 (Synchrosqueezing Transform, SST)

SST 是一种相对较新的时频分析方法,它通过对 STFT 或小波变换的结果进行后处理,将能量集中到信号的瞬时频率周围,从而提高时频表示的清晰度和准确性。SST 的核心思想是利用瞬时频率的信息,将 STFT 或小波变换的结果沿着频率方向进行挤压,从而得到更清晰的时频图像。

SST 的数学表达式可以概括为以下步骤:

  1. 计算 STFT 或小波变换: 首先计算信号的 STFT 或小波变换。

  2. 估计瞬时频率: 利用 STFT 或小波变换的结果估计信号的瞬时频率。瞬时频率可以通过计算 STFT 或小波变换的相位变化率来得到。

  3. 进行挤压: 将 STFT 或小波变换的结果沿着频率方向进行挤压,将能量集中到瞬时频率周围。

SST 相比于传统的 STFT 和小波变换,具有以下优点:

  • 更高的时频分辨率:

     SST 能够更清晰地展现信号的瞬时频率变化,提高时频图像的清晰度。

  • 更好的能量集中性:

     SST 能够将信号的能量集中到瞬时频率周围,减少能量扩散,提高信号检测的准确性。

  • 良好的可逆性:

     SST 具有良好的可逆性,可以从时频图像中重构原始信号。

SST 在信号处理领域的应用

SST 由于其优异的时频分析性能,在信号处理领域得到了广泛的应用,包括:

  • 语音信号处理:

     SST 可以用于语音信号的分析和识别,例如语音情感识别、语音增强等。SST 能够更清晰地展现语音信号的共振峰结构,提高语音识别的准确率。

  • 生物医学信号处理:

     SST 可以用于生物医学信号的分析,例如心电信号 (ECG) 分析、脑电信号 (EEG) 分析等。SST 能够更清晰地展现生物医学信号的瞬时频率变化,有助于疾病的诊断和监测。

  • 机械故障诊断:

     SST 可以用于机械振动信号的分析,例如轴承故障诊断、齿轮故障诊断等。SST 能够更清晰地展现机械振动信号的瞬时频率变化,有助于早期发现和诊断机械故障。

  • 地震信号分析:

     SST 可以用于地震信号的分析,例如地震事件检测、地震波形分类等。SST 能够更清晰地展现地震信号的瞬时频率变化,有助于地震研究和预警。

  • 金融时间序列分析:

     SST 可以用于金融时间序列的分析,例如股票价格预测、风险管理等。SST 能够更清晰地展现金融时间序列的瞬时频率变化,有助于理解市场动态和制定投资策略。

总结与展望

时频分析是信号处理领域的一项重要技术,它能够同时提供信号在时间和频率上的信息,从而为理解和分析复杂的非平稳信号提供了全新的视角。本文介绍了 STFT、小波变换等常用的时频分析方法,并重点研究了同步挤压变换 (SST) 及其在信号处理领域的应用。SST 是一种相对较新的时频分析方法,它通过对 STFT 或小波变换的结果进行后处理,将能量集中到信号的瞬时频率周围,从而提高时频表示的清晰度和准确性。SST 在语音信号处理、生物医学信号处理、机械故障诊断等领域得到了广泛的应用,展现了其强大的应用潜力。

未来,时频分析技术将朝着以下方向发展:

  • 更高的时频分辨率:

     进一步提高时频分析的时频分辨率,能够更清晰地展现信号的瞬时频率变化。

  • 更强的抗噪性能:

     提高时频分析在噪声环境下的鲁棒性,能够更准确地提取信号的特征。

  • 更高效的计算方法:

     开发更高效的计算方法,能够满足实时处理的需求。

  • 更广泛的应用领域:

     将时频分析技术应用于更多的领域,例如图像处理、无线通信等。

⛳️ 运行结果

🔗 参考文献

[1] 张建中,刘晗,黄忠来,等.基于同步挤压变换的水合物储层地震信号时频分析[J].海洋地质前沿, 2015, 31(6):7.DOI:10.16028/j.1009-2722.2015.06004.

[2] 李丛,徐华,戴聪聪 *,等.基于同步挤压小波变换的毫米波雷达时频分析方法研究[J].大气光学, 2023.

[3] 李丛,徐华,戴聪聪,等.基于同步挤压小波变换的毫米波雷达时频分析方法研究[J].大气与环境光学学报, 2023, 18(6):503-515.DOI:10.3969/j.issn.1673-6141.2023.06.001.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值