【M波段2D双树(希尔伯特)小波多分量图像去噪】基于定向M波段双树(希尔伯特)小波对多分量彩色图像进行降噪研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

图像去噪是数字图像处理领域中的一项基础且关键的任务。自然界采集到的图像往往受到各种噪声的污染,这严重影响了图像的视觉质量和后续的图像分析与处理。特别是多分量彩色图像,其去噪问题因其复杂性而更具挑战性。传统的小波阈值去噪方法在处理多分量图像时往往忽略了颜色通道之间的相关性,并且存在振荡伪影的问题。近年来,双树复小波变换(Dual-Tree Complex Wavelet Transform, DTCWT)因其近似平移不变性和良好的方向选择性在图像处理领域展现出卓越的性能。然而,标准的DTCWT在多尺度分解和方向性表达方面仍存在一定的局限性。

本文深入研究了一种基于定向M波段双树(希尔伯特)小波的多分量彩色图像去噪方法。该方法结合了M波段分解的精细尺度分析能力、双树(希尔伯特)小波的近似平移不变性和方向选择性,并将其应用于多分量彩色图像的联合去噪。通过对RGB三个颜色通道进行联合建模和去噪,充分利用了颜色通道之间的冗余信息和结构相似性,从而在保留图像细节和纹理信息的同时有效抑制噪声。本文详细阐述了定向M波段双树(希尔伯特)小波的构造原理、多尺度分解与重构过程,并提出了基于该变换的多分量图像去噪算法。实验结果表明,与传统的基于小波阈值去噪方法和标准DTCWT去噪方法相比,所提出的方法在峰值信噪比(PSNR)、结构相似性指数(SSIM)以及视觉效果等方面均取得了显著的提升,有效抑制了噪声,保留了图像的细节和纹理,降低了伪影的产生。

关键词: 图像去噪;多分量彩色图像;定向M波段双树小波;希尔伯特变换;联合去噪;小波阈值

1. 引言

随着数字成像技术的飞速发展,图像在科学研究、工业生产、医疗卫生以及日常生活中扮演着越来越重要的角色。然而,图像在采集、传输和存储过程中不可避免地会受到各种随机噪声的污染,例如高斯噪声、椒盐噪声等。这些噪声不仅降低了图像的视觉质量,而且对后续的图像分析和处理,如图像分割、特征提取、模式识别等造成了严重的干扰。因此,图像去噪是图像处理领域中一个持续研究的热点和难点。

特别是对于多分量彩色图像,其去噪问题更加复杂。彩色图像通常由红、绿、蓝(RGB)三个颜色通道组成,这三个通道之间存在着高度的相关性。传统的单通道去噪方法通常分别对每个颜色通道进行去噪,这种处理方式忽略了通道间的相关性,容易导致去噪后的图像出现颜色失真或伪影。因此,研究能够充分利用颜色通道之间相关性的多分量彩色图像联合去噪方法具有重要的理论意义和实际应用价值。

近年来,基于小波变换的图像去噪方法因其多尺度、多分辨率分析能力而受到广泛关注。小波变换能够将图像分解到不同的尺度和方向子带,使得信号和噪声在小波域中具有不同的分布特性,从而可以通过对小波系数进行阈值处理来达到去噪的目的。然而,标准的小波变换存在平移敏感性和方向选择性不足的缺点,容易在去噪后的图像中产生振荡伪影(Gibbs现象)。

双树复小波变换(DTCWT)作为一种改进的小波变换,通过引入双树结构和希尔伯特变换,实现了近似的平移不变性和良好的方向选择性。DTCWT能够将图像分解到具有六个方向(±15°, ±45°, ±75°)的复小波系数,对图像的边缘和纹理信息具有更好的捕捉能力。这使得基于DTCWT的图像去噪方法在抑制伪影方面优于标准小波变换。然而,标准的DTCWT在尺度分解上仍然是二倍下采样,对于某些具有精细结构和纹理的图像,可能无法提供足够精细的尺度分析。

为了进一步提升小波变换在图像去噪中的性能,特别是对于多分量彩色图像的联合去噪,本文提出了一种基于定向M波段双树(希尔伯特)小波的去噪方法。该方法旨在结合M波段分解的灵活性和精细性、双树(希尔伯特)小波的优点,并应用于多分量彩色图像的联合去噪。

2. 理论基础

2.1 标准小波变换及其局限性

标准的小波变换通过对图像进行多尺度分解,将图像信号分解到不同的频率子带。对于二维图像,通常采用二维可分小波变换,将图像分解为低频子带和三个高频子带(水平、垂直、对角线)。通过对高频子带的小波系数进行阈值处理,可以有效地抑制噪声。然而,标准小波变换存在以下局限性:

  • 平移敏感性:

     标准小波变换的系数会随着输入信号的平移而发生显著变化,这使得去噪结果对信号的起始位置敏感,容易产生伪影。

  • 方向选择性不足:

     二维可分小波变换只能提供水平、垂直和对角线三个方向的分析,对于图像中其他方向的细节和纹理信息捕捉能力有限。

  • 吉布斯现象:

     在对小波系数进行硬阈值或软阈值处理时,会在图像的边缘和纹理处产生振荡伪影,即吉布斯现象。

2.2 双树复小波变换 (DTCWT)

双树复小波变换(DTCWT)是为了克服标准小波变换的平移敏感性和方向选择性不足而提出的一种改进方法。DTCWT采用两个并行的小波分解树(Tree A和Tree B),两个树的滤波器组设计满足希尔伯特变换对的关系。Tree A主要产生实部小波系数,Tree B主要产生虚部小波系数。通过组合两个树的系数,可以得到具有近似平移不变性的复小波系数。

DTCWT在二维图像处理中通常采用四棵树结构(分别处理行和列的复数分解),能够将图像分解到具有六个方向(±15°, ±45°, ±75°)的复小波系数。这些复小波系数的模值具有近似平移不变性,并且其相位信息能够表示局部方向信息。这使得DTCWT在图像去噪、图像增强和特征提取等方面表现出优于标准小波变换的性能。

尽管DTCWT具有显著的优点,但其多尺度分解仍然基于二倍下采样,这在某些应用场景下可能不够灵活。

2.3 M波段小波变换

M波段小波变换是标准小波变换的一种推广,它将信号分解为M个频带,而不是标准的两个频带(低频和高频)。通过选择不同的滤波器组和下采样率,M波段小波变换可以实现更灵活和精细的频率分解。这为在不同频率子带上应用更合适的处理策略提供了可能性。

M波段小波变换在理论上具有更大的灵活性,但其滤波器组的设计相对复杂,并且需要权衡计算复杂性和分解精度。

2.4 希尔伯特变换与方向性

希尔伯特变换(Hilbert Transform)在信号处理中用于构造解析信号,即将实信号转换为复信号。解析信号的实部为原始信号,虚部为原始信号的希尔伯特变换。解析信号具有单边频谱,即其频谱只存在于正频率或负频率。

在二维图像处理中,利用希尔伯特变换可以实现图像的方向性分析。通过对不同方向上的图像进行希尔伯特变换,可以获得具有方向信息的复信号。DTCWT正是利用了希尔伯特变换的思想,通过设计满足希尔伯特对关系的滤波器组,实现了对图像不同方向的分解。

3. 定向M波段双树(希尔伯特)小波

本文提出的定向M波段双树(希尔伯特)小波旨在将M波段分解的精细尺度分析能力与双树(希尔伯特)小波的近似平移不变性和方向选择性相结合。其核心思想是在双树结构的基础上,将每一级的二倍分解替换为M波段分解。

3.1 构造原理

构建定向M波段双树(希尔伯特)小波的关键在于设计满足特定条件的M波段滤波器组。与标准的双树小波一样,需要构建两套滤波器组,分别用于Tree A和Tree B。这两套滤波器组需要满足近似希尔伯特对的关系,以确保重构的精确性和近似平移不变性。

对于一维信号的M波段双树分解,每一级分解将输入信号分解为M个子带。在双树结构中,对于Tree A和Tree B,都需要设计M个滤波器:一个低通滤波器和M-1个带通滤波器。这些滤波器需要满足完美重构或近似完美重构条件,并且Tree A和Tree B对应的滤波器之间需要满足近似希尔伯特对关系。例如,对于二维图像的分解,可以采用行和列分别进行M波段双树分解,类似于二维DTCWT的四棵树结构。

设计满足上述条件的M波段双树滤波器组是一个具有挑战性的问题,需要综合考虑滤波器的频率响应、重构特性和计算效率。可以通过优化方法来设计满足特定性能指标的滤波器组。

3.2 多尺度分解与重构

定向M波段双树(希尔伯特)小波的分解过程如下:

  1. 一级分解:

     对输入的二维多分量彩色图像(分别对每个颜色通道)进行第一级分解。对于每个颜色通道,采用定向M波段双树滤波器组进行分解,将图像分解为M个复系数子带。这些子带包含了图像在不同频率和方向上的信息。

  2. 多级分解:

     对上一级分解得到的低频子带(通常是实部低频子带)进行进一步的定向M波段双树分解。重复该过程直到达到预设的分解级数。高频子带(带通子带)不再进行进一步分解。

  3. 多分量联合表示:

     经过多级分解后,对于多分量彩色图像,在每个尺度和每个M波段子带下,会得到三个颜色通道对应的复小波系数。这些系数构成了图像在定向M波段双树域中的表示。

重构过程是分解过程的逆过程,通过使用相应的重构滤波器组,将分解得到的各个子带系数进行反变换,逐步重构出原始图像。同样需要确保Tree A和Tree B的重构过程协同工作,以保证精确重构。

相比于标准的DTCWT,定向M波段双树小波通过增加M波段分解,可以在不同的尺度上提供更细致的频率分解,理论上能够更好地捕捉图像中的多尺度细节信息。同时,保留了双树结构的近似平移不变性和方向选择性。

4. 基于定向M波段双树(希尔伯特)小波的多分量图像去噪算法

基于定向M波段双树(希尔伯特)小波的多分量彩色图像去噪算法主要包括以下步骤:

  1. 定向M波段双树分解:

     对输入的噪声多分量彩色图像进行定向M波段双树分解,得到不同尺度、不同M波段子带下的复小波系数。对于多分量彩色图像,分别对RGB三个通道进行分解,得到各自的系数。

  2. 多分量联合建模与阈值处理:

     这是算法的核心步骤。在定向M波段双树域中,信号和噪声具有不同的特性。通常,信号对应的复小波系数模值较大,而噪声对应的复小波系数模值较小。同时,不同颜色通道在同一尺度、同一M波段子带下对应的复小波系数之间存在相关性。
    为了充分利用这种相关性,可以采用联合阈值处理的方法。具体来说,对于同一尺度、同一M波段子带下,来自三个颜色通道对应的复小波系数集合,可以采用以下策略:

    • 联合稀疏性建模:

       假设在定向M波段双树域中,图像的结构信息在三个颜色通道中表现出联合稀疏性。即,如果某个位置的某个M波段子带系数对应的是图像结构,那么在三个通道中都应该有较大的模值。而噪声在不同通道之间通常是独立的。

    • 联合阈值计算:

       基于联合稀疏性假设,可以计算三个通道系数的联合统计量(例如,模值的L2范数)。然后根据该联合统计量来决定是否对该位置的系数进行保留或抑制。例如,如果三个通道系数模值的L2范数小于某个阈值,则认为该位置主要是噪声,将三个通道的系数都置零或进行收缩。

    • 颜色通道间相关性利用:

       除了简单的联合阈值,还可以采用更复杂的模型来利用通道间的相关性,例如基于主成分分析(PCA)的方法,对同一位置、同一子带的三个通道系数进行PCA,然后在变换域中进行阈值处理,再反变换回原系数空间。或者采用其他多通道去噪方法,如多通道统计模型。
      阈值的选择是去噪效果的关键。可以采用一些自适应阈值方法,例如VisuShrink、SureShrink或BayesShrink等。这些方法可以根据噪声水平和子带系数的统计特性来确定最佳阈值。

  3. 定向M波段双树重构:

     对经过阈值处理后的复小波系数进行定向M波段双树逆变换,重构出去噪后的多分量彩色图像。

在实际实现中,定向M波段双树滤波器组的设计和多尺度分解的级数选择都需要根据具体的应用场景和图像特性进行优化。此外,对于多分量彩色图像,去噪可以在不同的颜色空间进行,例如RGB空间、YCbCr空间等。在YCbCr空间进行去噪通常具有更好的效果,因为亮度和色度通道之间的噪声特性可能不同,并且人眼对亮度信息的噪声更敏感。可以在YCbCr空间进行分解和阈值处理,然后再转换回RGB空间。

5. 结论与展望

本文提出了一种基于定向M波段双树(希尔伯特)小波的多分量彩色图像去噪方法。该方法结合了M波段分解的精细尺度分析能力、双树(希尔伯特)小波的近似平移不变性和方向选择性,并应用于多分量彩色图像的联合去噪。通过在定向M波段双树域中对不同颜色通道的系数进行联合建模和阈值处理,充分利用了通道间的相关性,有效地抑制了噪声,同时保留了图像的细节和纹理。实验结果验证了所提出方法的有效性,在客观评价指标和主观视觉效果上均取得了显著的提升。

尽管本文提出的方法取得了较好的效果,但仍存在一些可以进一步研究和改进的方向:

  • 最优M波段分解的确定:

     M波段分解的参数(M值和滤波器组)的选择对去噪效果有重要影响。如何根据图像的特性和噪声水平自适应地选择最优的M值和设计最优的滤波器组是一个值得深入研究的问题。

  • 更先进的联合建模与阈值方法:

     本文采用了相对简单的联合阈值方法。可以探索更先进的多分量联合建模方法,例如基于统计模型、稀疏表示或者深度学习的方法,以更精确地描述多分量小波系数的分布特性和相互关系,从而实现更优化的阈值处理。

  • 推广到其他类型噪声:

     本文主要针对高斯白噪声进行了研究。将该方法推广到处理其他类型的噪声,如椒盐噪声、乘性噪声等,需要研究不同噪声在定向M波段双树域中的特性,并设计相应的去噪策略。

  • 计算效率优化:

     定向M波段双树变换的计算复杂度相对较高。研究更高效的算法实现和硬件加速方法,以提高去噪的处理速度,具有实际意义。

  • 与其他图像处理任务的结合:

     定向M波段双树小波具有优良的特性,可以将其应用于其他图像处理任务,如图像增强、图像融合、特征提取等,进一步探索其应用潜力。

⛳️ 运行结果

🔗 参考文献

[1] 王少东,吴春林,刘永城,等.结合加权引导滤波和小波变换的低照度图像增强算法[J].湖北工业大学学报, 2023, 38(5):14-18.

[2] 张宇鹏.基于变分模态分解的多分量信号降噪与分离技术研究[D].哈尔滨工业大学[2025-04-23].

[3] 邵永社,陈鹰,李晶.一种基于小波系数相关性的图像降噪方法[J].武汉大学学报·信息科学版, 2005, 30(9): 771-774. SHAO Yongshe, CHEN Ying, LI Jing. A Denoising Method for Image Data Based on the Relativity of the Wavelet Coefficient. GEOMATICS AND INFORMATION SCIENCE OF WUHAN UNIVERS, 2005, 30(9):771-774.DOI:10.3321/j.issn:1671-8860.2005.09.005.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值