基于蒙特卡洛的电动车有序充放电附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源结构的转型和环境保护意识的增强,电动汽车(EV)作为一种清洁、高效的交通工具,正以前所未有的速度普及。然而,大规模电动汽车的无序充电行为,尤其是在用电高峰期,对电网的稳定运行带来了显著的挑战,包括负荷峰值的增加、线路损耗的上升以及变压器容量的超载等。为了缓解这些问题,有序充放电(Managed Charging and Discharging)策略应运而生,旨在通过合理调度电动汽车的充放电行为,优化电网负荷曲线,提高能源利用效率,并可能为电网提供辅助服务。

有序充放电并非简单地限制充电,而是利用智能技术和通信网络,根据电网状态、电力价格、用户需求和可再生能源发电等因素,对电动汽车的充放电过程进行动态管理。在众多研究有序充放电策略的方法中,基于蒙特卡洛方法(Monte Carlo Method)的应用日益受到关注。蒙特卡洛方法是一种利用随机数或伪随机数来解决计算问题的方法,它通过模拟大量随机事件的发生过程,来估计特定事件的概率或结果。在处理大规模电动汽车群体的充放电问题时,由于每辆电动汽车的到达时间、离开时间、起始电量、充电需求以及用户行为都存在不确定性,蒙特卡洛方法能够有效地模拟这些随机因素的影响,从而评估不同有序充放电策略的性能和鲁棒性。

本文将深入探讨基于蒙特卡洛方法的电动车有序充放电研究。首先,我们将介绍电动汽车有序充放电的基本原理和重要性。其次,详细阐述蒙特卡洛方法在电动汽车有序充放电研究中的应用场景和优势。接着,我们将讨论构建基于蒙特卡洛的有序充放电模型的关键要素,包括不确定性因素的建模、模拟流程的设计以及评估指标的选择。最后,通过分析一些典型的应用案例,总结基于蒙特卡洛方法的电动车有序充放电研究的现状、挑战与未来发展方向。

第一章:电动车有序充放电的基本原理与重要性

1.1 无序充电对电网的影响

电动汽车的充电功率通常较高,若大量电动汽车在同一时间段(例如下班回家后)进行充电,会形成巨大的用电负荷高峰,叠加在原本的居民生活和工业用电高峰之上,使得电网负荷曲线呈现“峰上加峰”的现象。这会导致:

  • 负荷峰值增加:

     增加电网对发电容量和输配电设施的需求,可能需要建设新的发电厂和升级电网基础设施,带来巨大的投资成本。

  • 线路损耗增加:

     电力传输过程中的损耗与电流的平方成正比,负荷高峰期的电流增大,导致线路损耗显著增加,降低了电网的整体效率。

  • 电压不稳与频率波动:

     突发的负荷变化可能导致局部电网电压下降和频率波动,影响电网的稳定性。

  • 变压器过载与寿命缩短:

     充电负荷集中可能导致配电变压器过载,加速其老化甚至损坏,缩短设备寿命。

  • 难以接纳大规模可再生能源:

     电动汽车充电的随机性与可再生能源(如太阳能、风能)发电的间歇性叠加,使得电网调度更加复杂,不利于大规模可再生能源的消纳。

1.2 有序充放电的原理与目标

有序充放电的核心思想在于通过智能控制和通信技术,协调电动汽车的充电行为,避免在电网负荷高峰期集中充电,并利用其电池作为储能单元为电网提供支持。其基本原理包括:

  • 信息交互:

     电动汽车、充电桩、电网运营商以及用户之间建立双向通信,实时获取电网状态(如负荷、电价)、可再生能源出力、用户需求(如期望离开时间、目标电量)等信息。

  • 优化调度:

     基于获取的信息,通过算法对电动汽车的充电功率和时间进行动态调整和优化,可以是集中式控制(由电网运营商或第三方平台统一调度)或分布式控制(每辆车根据本地信息和规则自主调整)。

  • 激励机制:

     通过分时电价、补贴等经济激励手段,引导用户在非高峰时段或电价较低时充电,或者在需要时参与放电。

有序充放电的主要目标包括:

  • 削峰填谷:

     将充电负荷从高峰期转移到低谷期,平滑电网负荷曲线,降低负荷峰值。

  • 提高电网稳定性:

     通过V2G(Vehicle-to-Grid,车到电网)技术,在电网需要时,电动汽车可以向电网放电,提供调峰、调频等辅助服务。

  • 提高能源利用效率:

     鼓励用户在可再生能源出力较高的时段充电,提高清洁能源的消纳能力。

  • 降低用户充电成本:

     利用分时电价等策略,引导用户在电价较低时充电,降低充电费用。

  • 延迟电网基础设施升级:

     通过优化负荷分布,可以在一定程度上延迟对电网基础设施的投资需求。

第二章:蒙特卡洛方法在电动车有序充放电中的应用

2.1 蒙特卡洛方法简介

蒙特卡洛方法的核心思想是通过大量的随机抽样和模拟,来逼近问题的解。其基本步骤通常包括:

  • 确定待求解的问题:

     例如,评估某种有序充放电策略在随机用户行为下的效果。

  • 构建随机模型:

     描述问题中包含的随机变量及其概率分布,例如电动汽车的到达时间分布、初始电量分布、充电需求分布等。

  • 进行大量独立随机抽样:

     根据构建的随机模型,生成大量的随机场景,每个场景代表一种可能的电动汽车行为和电网状态。

  • 对每个随机场景进行模拟:

     在每个场景下,模拟有序充放电策略的执行过程,记录相关的输出结果(例如,电网负荷峰值、充电完成率、用户满意度等)。

  • 对模拟结果进行统计分析:

     对大量模拟结果进行统计分析,得到待求解问题的估计值及其置信区间。

蒙特卡洛方法适用于那些难以用解析方法求解或包含大量不确定性因素的问题。在电动汽车有序充放电领域,蒙特卡洛方法能够有效地处理用户行为、电网状态、可再生能源出力等多种不确定性因素。

2.2 应用场景与优势

蒙特卡洛方法在电动汽车有序充放电研究中有着广泛的应用场景,主要体现在:

  • 有序充放电策略的性能评估:

     蒙特卡洛方法可以模拟大规模电动汽车群体的随机行为,评估不同有序充放电策略在各种随机场景下的表现,例如对削峰填谷效果、充电完成率、用户等待时间等指标的影响。这有助于比较不同策略的优劣,选择最适合特定场景的策略。

  • 电网规划与容量评估:

     通过模拟不同渗透率下的电动汽车有序充放电场景,可以评估电网设施(如变压器、线路)的承载能力,预测未来负荷需求,为电网规划和扩容提供依据。

  • 不确定性因素的影响分析:

     蒙特卡洛方法可以分析特定不确定性因素(如极端天气对充电行为的影响、电力市场价格的波动等)对有序充放电效果的影响程度,帮助制定更鲁棒的策略。

  • 用户行为建模与影响分析:

     蒙特卡洛方法可以用来模拟不同用户群体的充电行为习惯和偏好,例如不同用户对充电时间和价格的敏感度,从而评估用户行为对有序充放电策略实施效果的影响。

  • 风险评估:

     通过模拟各种不利情景(例如,大量车辆在同一时间突然需要充电),可以评估有序充放电策略的风险,并采取相应的预防措施。

  • 电力市场辅助服务潜力评估:

     利用蒙特卡洛方法模拟电动汽车参与电力市场辅助服务的潜力,例如提供备用容量或频率调节服务,评估其经济效益。

蒙特卡洛方法在电动汽车有序充放电研究中具有以下优势:

  • 处理复杂不确定性:

     能够有效处理包含多个随机变量和复杂相互作用的不确定性问题。

  • 无需精确解析解:

     即使问题没有精确的解析解,蒙特卡洛方法也能提供问题的近似解。

  • 易于理解和实现:

     蒙特卡洛方法的基本思想相对简单,易于理解和实现。

  • 灵活性高:

     可以根据具体问题灵活调整模型和模拟过程。

  • 并行计算友好:

     大量的独立模拟过程可以方便地并行计算,提高计算效率。

第三章:基于蒙特卡洛的有序充放电模型构建

构建基于蒙特卡洛的电动车有序充放电模型需要对系统中的不确定性因素进行建模,设计合理的模拟流程,并选择合适的评估指标。

3.1 不确定性因素的建模

在电动汽车有序充放电系统中,主要的不确定性因素包括:

  • 电动汽车到达与离开时间:

     可以通过分析历史数据或用户出行模式,建立合适的概率分布模型,例如泊松过程或基于经验分布的抽样。

  • 电动汽车初始电量(State of Charge, SOC):

     到达时的SOC受到用户出行距离、前次充电情况等多种因素影响,可以采用均匀分布、正态分布或其他符合实际情况的分布。

  • 电动汽车充电需求:

     用户的充电需求可能达到100%SOC,也可能只达到某个目标SOC,可以建模为到达时SOC与目标SOC之间的差值,或直接建模为所需充电量。用户的充电需求可能也受行程安排等因素影响。

  • 充电功率:

     充电功率受充电桩类型、车辆电池管理系统以及有序充电策略的调度指令影响。在无序充电情况下,可以假设按最大功率充电;在有序充电下,充电功率是模型输出的变量。

  • 电力价格:

     电力价格,尤其是分时电价,是重要的不确定性因素,其波动会影响用户行为和调度策略的制定。可以基于历史数据或预测模型建立价格波动模型。

  • 可再生能源出力:

     太阳能、风能等可再生能源出力具有间歇性和波动性,对电网负荷和有序充电策略有重要影响。可以基于历史数据或天气预报等建立出力预测模型或概率分布模型。

  • 电网基本负荷:

     除了电动汽车充电负荷,电网还有其他基本负荷,其波动也具有不确定性。可以基于历史数据建立基本负荷模型。

  • 用户对充电时间与价格的偏好:

     不同用户对充电完成时间的要求和对电价的敏感度不同,这种用户行为的不确定性对有序充电策略的效果有重要影响。可以通过问卷调查或历史数据分析来建模用户偏好。

对这些不确定性因素进行建模时,需要选择合适的概率分布(如正态分布、均匀分布、泊松分布、指数分布等),或者基于历史数据进行经验分布抽样。对于一些相互关联的因素(如到达时间与初始电量),可以采用多变量联合分布或建立相关的随机过程模型。

3.2 模拟流程设计

典型的基于蒙特卡洛的电动车有序充放电模拟流程可以设计如下:

  1. 初始化:

     设定模拟参数,包括模拟时长、时间步长、电动汽车数量、充电桩数量、电网基本负荷模型、电力价格模型、可再生能源出力模型以及待评估的有序充放电策略等。

  2. 生成随机场景:

     在每个时间步长内,根据不确定性因素的概率分布模型,随机生成新的电动汽车到达事件(包括到达时间、初始SOC、充电需求等)、电网基本负荷、电力价格和可再生能源出力等。对于已有的电动汽车,更新其状态(如剩余电量、是否连接充电桩等)。

  3. 执行有序充放电策略:

     对于连接到充电桩的电动汽车,根据当前电网状态、电力价格、用户需求以及预设的有序充放电策略,计算并分配充电功率。这可以是基于优化算法的集中式调度,也可以是基于规则的分布式控制。对于放电(V2G)功能,也在此步骤进行调度。

  4. 更新系统状态:

     根据分配的充电功率,更新电动汽车的SOC、充电桩的状态、电网的总负荷等。

  5. 记录结果:

     在每个时间步长结束时,记录关键的系统状态和性能指标,例如总充电负荷、电网负荷峰值、线路损耗、充电完成的车辆数量、用户等待时间等。

  6. 重复步骤2-5:

     模拟过程持续进行,直到达到设定的模拟时长。

  7. 重复步骤1-6:

     进行大量的独立模拟(例如,数百次或数千次),每个模拟代表一个独立的随机场景。

  8. 统计分析:

     对所有独立模拟的结果进行统计分析,计算平均值、标准差、置信区间等统计量,评估有序充放电策略的性能和鲁棒性。例如,计算平均削峰比例、平均充电完成率、最坏情况下的负荷峰值等。

3.3 评估指标选择

为了评估有序充放电策略的效果,需要选择合适的评估指标,常见的指标包括:

  • 电网负荷指标:
    • 负荷峰值(Peak Load):

       模拟期间电网总负荷的最大值。有序充放电的目标之一是降低负荷峰值。

    • 负荷谷值(Valley Load):

       模拟期间电网总负荷的最小值。有序充放电可能提高负荷谷值,实现削峰填谷。

    • 负荷标准差或方差:

       反映负荷曲线的平滑程度,较低的值表示负荷曲线更平滑。

    • 负荷峰谷差(Peak-to-Valley Difference):

       负荷峰值与谷值之差,反映负荷曲线的波动幅度。

    • 负荷因子(Load Factor):

       平均负荷与峰值负荷之比,反映电网设备的利用率,较高的负荷因子表示利用率更高。

    • 线路损耗(Line Loss):

       根据总负荷计算的电力传输过程中的能量损耗。

  • 电动汽车用户指标:
    • 充电完成率(Charging Completion Rate):

       在期望离开时间前达到目标SOC的电动汽车比例。这是衡量用户满意度的重要指标。

    • 平均充电等待时间(Average Charging Waiting Time):

       从电动汽车连接到充电桩到开始充电的平均时间。

    • 平均充电时长(Average Charging Duration):

       从开始充电到达到目标SOC的平均时间。

    • 平均充电成本(Average Charging Cost):

       用户为充电支付的平均费用(考虑分时电价等)。

  • 经济效益指标:
    • 电网运营成本降低:

       通过削峰填谷、减少线路损耗等方式为电网带来的经济效益。

    • 参与辅助服务的收益:

       通过V2G功能为电网提供辅助服务获得的收益。

    • 用户充电成本降低:

       通过利用低谷电价等方式为用户带来的经济效益。

选择合适的评估指标取决于研究的目的。例如,如果侧重于电网运行,则应重点关注负荷指标和电网运营成本;如果侧重于用户体验,则应关注充电完成率和等待时间;如果侧重于经济效益,则应关注成本和收益指标。

第四章:应用案例分析

基于蒙特卡洛方法的电动车有序充放电研究已经取得了一些有价值的成果。以下是一些典型的应用案例的抽象概括:

4.1 评估不同有序充放电策略的削峰填谷效果

研究人员可以利用蒙特卡洛方法模拟大量电动汽车在不同有序充放电策略(例如,基于分时电价的充电调度、基于实时负荷的功率控制、考虑用户优先级的调度等)下的充电行为,并计算不同策略下的电网负荷曲线、负荷峰值和峰谷差。通过对比不同策略的模拟结果,可以评估其削峰填谷效果,为实际应用提供指导。例如,模拟结果可能表明,基于实时负荷的功率控制在削峰效果上优于简单的分时电价策略,但在充电完成率上可能略逊一筹。

4.2 分析电动汽车渗透率对电网负荷的影响

随着电动汽车渗透率的不断提高,其对电网的影响也日益显著。蒙特卡洛方法可以模拟不同渗透率下,在无序充电和不同有序充放电策略下的电网负荷情况。通过模拟结果,可以预测未来不同渗透率下电网可能面临的挑战,并评估有序充放电策略在缓解这些挑战方面的作用。例如,模拟可能表明,当电动汽车渗透率达到一定阈值时,即使实施有序充电,电网负荷峰值仍然会显著增加,可能需要考虑电网升级。

4.3 评估V2G技术在提供辅助服务方面的潜力

V2G技术使得电动汽车电池可以作为分布式储能单元,为电网提供调峰、调频等辅助服务。蒙特卡洛方法可以模拟大量具备V2G功能的电动汽车在电力市场中的行为,评估其在不同市场机制和电网需求下的辅助服务潜力。例如,模拟可以评估具备V2G功能的电动汽车群体能够提供的备用容量,或者其参与频率调节的效益,为制定相关的市场机制和激励政策提供参考。

4.4 研究不确定性因素对有序充放电效果的影响

不确定性因素是电动汽车有序充放电的关键挑战。蒙特卡洛方法可以用来分析不同不确定性因素(例如,用户对充电时间的严格要求、电力价格的剧烈波动、可再生能源出力的大幅波动等)对有序充放电策略性能的影响。通过敏感性分析,可以识别对策略效果影响最大的不确定性因素,并针对性地提高策略的鲁棒性。例如,模拟结果可能表明,用户对充电完成时间的严格要求是影响充电完成率的关键因素,需要设计更灵活的调度策略来满足用户需求。

第五章:挑战与未来发展方向

尽管基于蒙特卡洛方法的电动车有序充放电研究已经取得了许多进展,但仍然面临一些挑战:

  • 计算效率:

     对于大规模电动汽车群体和长时间的模拟,蒙特卡洛方法可能需要大量的计算资源和时间。

  • 模型精度:

     蒙特卡洛模拟结果的精度取决于输入模型的准确性,构建准确的不确定性因素模型需要大量的历史数据和对实际情况的深入了解。

  • 用户行为建模:

     用户行为具有复杂性和多样性,准确建模用户的充电偏好和响应机制是一个挑战。

  • 实时性要求:

     在实际的有序充放电系统中,调度决策需要在短时间内做出,蒙特卡洛方法本身通常用于离线分析和策略评估,如何将其与实时调度相结合是一个研究方向。

  • 隐私保护:

     获取用户的充电数据和出行信息可能涉及隐私问题,如何在保护用户隐私的前提下获取必要的数据是需要解决的问题。

未来的研究方向可以包括:

  • 结合其他优化方法:

     将蒙特卡洛方法与优化算法(如线性规划、动态规划、强化学习等)相结合,例如,利用蒙特卡洛模拟评估优化算法的性能或为优化算法提供输入。

  • 提高计算效率:

     探索更高效的蒙特卡洛模拟技术,如方差缩减技术、并行计算、分布式计算等,以应对大规模模拟的计算挑战。

  • 完善不确定性建模:

     利用更先进的数据分析和机器学习技术,构建更准确和精细的不确定性因素模型,包括用户行为模型、电力市场模型等。

  • 在线蒙特卡洛方法:

     研究如何将蒙特卡洛方法应用于在线的实时调度,例如,利用序列蒙特卡洛方法或基于采样的预测控制。

  • 考虑复杂电网模型:

     将蒙特卡洛模拟与更详细的电网模型相结合,考虑线路阻抗、变压器特性等因素对有序充放电效果的影响。

  • 研究用户参与机制:

     深入研究如何设计有效的激励机制和用户界面,鼓励用户积极参与有序充放电,提高策略的实施效果。

  • 多主体协同优化:

     考虑电网运营商、电动汽车用户、充电服务提供商等多个主体的利益和目标,研究多主体协同的有序充放电策略。

结论

电动汽车的有序充放电是应对大规模电动汽车普及对电网挑战的关键技术。蒙特卡洛方法作为一种强大的不确定性分析工具,在电动汽车有序充放电研究中展现出独特的优势,能够有效地评估不同策略在随机用户行为和电网状态下的性能,为策略设计、电网规划和风险评估提供有力支持。

尽管面临计算效率、模型精度和用户行为建模等挑战,但随着计算能力的提升、数据分析技术的发展以及对用户行为的深入理解,基于蒙特卡洛方法的电动车有序充放电研究将继续深入发展。未来的研究应致力于提高模型的准确性和计算效率,完善用户行为建模,并将蒙特卡洛方法与其他优化和控制技术相结合,以构建更智能、鲁棒和用户友好的电动汽车有序充放电系统,为构建更加可持续和高效的能源未来做出贡献。通过不断地研究和实践,基于蒙特卡洛方法的电动车有序充放电将为智能电网的发展注入新的活力。

⛳️ 运行结果

🔗 参考文献

[1] 谈丽娟.V2G模式下电动汽车充放电控制策略研究[D].南京师范大学,2015.DOI:10.7666/d.Y2856871.

[2] 高少希,张达敏,陈伟川,等.计及供需两侧的电动汽车有序充放电优化算法研究[J].电子测量与仪器学报, 2020(11):140-147.

[3] 马乔.基于电动汽车充电负荷时空分布预测的充电站布局优化及有序充放电策略研究[D].西安理工大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值