【带 QAM 输入的通道容量】BPSK, QPSK, 8PSK, 16-QAM, 64-QAM, 32-QAM附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数字通信系统中,信息通过通道进行传输。通道的容量是衡量其传输信息能力的根本指标,它决定了在给定信噪比(SNR)下,可以以任意小的错误概率传输的最大信息速率。香农-哈特利定理(Shannon-Hartley theorem)为我们提供了计算加性高斯白噪声(AWGN)通道容量的理论上限。然而,在实际应用中,我们通常使用离散的星座点来表示信息,例如相移键控(PSK)和正交幅度调制(QAM)。这些调制方案通过将信息映射到复平面上的离散点来实现信号的传输,其可达到的信息速率受到所选星座点数量和形状的影响。本文将深入探讨在AWGN通道下,输入采用不同QAM(包括PSK作为特殊的QAM形式)调制方式时,通道的容量特性。我们将依次分析BPSK、QPSK、8PSK、16-QAM、32-QAM和64-QAM等常见调制方式,并比较它们在不同SNR下的容量表现。

1. 通道容量的理论基础

其中:

  • CC

     是通道容量,单位为比特每秒(bps)。

  • BB

     是通道带宽,单位为赫兹(Hz)。

  • SS

     是接收信号的平均功率,单位为瓦特(W)。

  • NN

     是接收端噪声的平均功率,单位为瓦特(W)。

  • S/NS/N

     是信噪比(SNR)。

这个公式给出了连续输入的理论最大容量。然而,在数字通信中,我们使用离散的信号星座点。对于离散输入,通道容量的计算更为复杂,它与输入信号的概率分布以及通道的转移概率有关。

2. 采用离散QAM星座的通道容量

虽然香农-哈特利定理给出了连续输入的理论上限,但它并不能直接应用于离散输入的具体调制方案。对于具有特定离散星座点的调制方式,我们可以计算其可达到的信息速率,但这个速率不一定能达到理论容量。然而,在某些条件下,当星座点数量足够大且分布合理时,离散输入的容量可以逼近连续输入的理论容量。

对于采用M个星座点的QAM调制,每个符号可以携带  比特的信息。可达到的信息速率受限于星座点的数量、分布以及错误概率的要求。在没有纠错编码的情况下,可达到的速率通常低于理论容量。但是,通过使用强大的信道编码技术,我们可以使可达到的速率接近理论容量。

3. 常见QAM调制方式的容量分析

我们将逐一分析不同QAM调制方式在AWGN通道下的容量特性。为了便于比较,我们通常关注在给定信噪比,每符号能量与噪声功率谱密度之比)下,单位带宽可达到的比特速率,即频谱效率(bps/Hz)。频谱效率与容量的关系为:。

3.1 BPSK (Binary Phase Shift Keying)

在AWGN通道下,BPSK的可达到的容量曲线可以通过数值计算获得。在低SNR下,BPSK的容量逼近香农极限。随着SNR的增加,BPSK的容量逐渐趋于饱和,最高达到 1 bps/Hz。这是因为BPSK每符号只能传输1比特,即使信噪比很高,也无法传输更多的信息。

3.2 QPSK (Quadrature Phase Shift Keying)

QPSK的容量曲线高于BPSK。在低SNR下,QPSK的容量增速比BPSK快。随着SNR的增加,QPSK的容量趋于饱和,最高达到 2 bps/Hz。这反映了QPSK相比BPSK能够传输更多的信息。

3.3 8PSK (8-ary Phase Shift Keying)

8PSK的容量曲线进一步提高。在相同的SNR下,8PSK的可达到的容量高于QPSK。随着SNR的增加,8PSK的容量趋于饱和,最高达到 3 bps/Hz。然而,由于星座点之间的距离更近,8PSK对噪声的容忍度低于QPSK和BPSK,需要在更高的SNR下才能获得较低的误码率。

3.4 16-QAM (16-ary Quadrature Amplitude Modulation)

16-QAM的容量曲线显著高于PSK调制。在相同的SNR下,16-QAM可以达到更高的频谱效率。随着SNR的增加,16-QAM的容量趋于饱和,最高达到 4 bps/Hz。与纯相位调制的PSK相比,QAM通过引入幅度变化来增加星座点数量,从而提高了信息传输速率,但同时也对噪声和非线性失真更加敏感。

32-QAM的容量曲线进一步提高,最高可达 5 bps/Hz。相比16-QAM,32-QAM在相同带宽下可以传输更多的信息,但对通道条件的要求也更高。

64-QAM的容量曲线在QAM调制中通常是较高的,最高可达 6 bps/Hz。在较高的SNR下,64-QAM可以实现非常高的频谱效率,是许多现代通信系统(如Wi-Fi、LTE)常用的调制方式。然而,由于星座点密集,64-QAM对噪声和通道失真非常敏感,需要在非常好的通道条件下才能稳定工作。

4. 不同QAM调制方式容量曲线的比较

将不同QAM调制方式的容量曲线绘制在同一张图上,我们可以清晰地看到它们之间的关系。在低SNR下,容量曲线的增长率与每个符号携带的比特数相关。

重要的是要注意,这些容量曲线是在理想的AWGN通道下计算的。在实际通道中,存在衰落、多径效应、非线性失真等因素,这些因素会降低实际可达到的容量。此外,这些容量值是理论上限,实际系统中能够达到的信息速率还取决于所使用的信道编码和信号处理技术。

在高SNR区域,随着星座点数量的增加,QAM调制的可达到的容量更接近香农极限。这是因为更多的星座点可以更精细地利用通道的信噪比。然而,增加星座点数量也会使星座点之间的距离变小,从而降低了对噪声的容忍度,需要在更高的SNR下才能实现可靠传输。

5. 香农极限与QAM容量

香农-哈特利定理给出了连续输入的理论容量上限。对于离散输入的QAM调制,其容量不可能超过香农极限。在低SNR区域,QAM调制的可达到的容量曲线与香农极限非常接近,特别是对于星座点数量较少的调制方式(如BPSK、QPSK)。在高SNR区域,随着星座点数量的增加,QAM的容量逐渐趋近于香农极限,但永远无法达到它。这是因为离散星座点对信号空间进行了量化,损失了一部分信息。

香农极限为我们提供了一个重要的参考基准,它告诉我们在给定SNR下,无论采用何种调制和编码方案,都无法超越这个理论上限。通过比较不同QAM调制方式的容量曲线与香农极限,我们可以评估这些调制方式的效率以及在特定SNR下,它们距离理论最优还有多远。

6. 结论

本文深入探讨了在AWGN通道下,输入采用不同QAM调制方式时,通道的容量特性。我们分析了BPSK、QPSK、8PSK、16-QAM、32-QAM和64-QAM等调制方式,并比较了它们的容量曲线。结果表明,随着星座点数量的增加,QAM调制可以在更高的SNR下达到更高的频谱效率,从而提高通道容量。然而,增加星座点数量也会降低调制方式对噪声的容忍度,需要在更高的SNR下才能实现可靠传输。

香农-哈特利定理为我们提供了AWGN通道容量的理论上限,离散QAM调制的容量始终低于香农极限,但在高SNR区域,随着星座点数量的增加,容量可以逼近香农极限。选择合适的QAM调制方式是数字通信系统设计中的重要考虑因素,需要根据实际的通道条件、所需的传输速率以及可接受的误码率来综合权衡。在实际应用中,通常需要结合信道编码技术来逼近理论容量,实现可靠高效的信息传输。未来,更先进的调制和编码技术,例如非格状调制(Non-Uniform Constellations)和概率形状(Probabilistic Shaping),有望进一步提高离散输入的通道容量,使其更接近香农极限。

⛳️ 运行结果

🔗 参考文献

[1] 于风云,张平.QAM调制与解调的全数字实现[J].现代电子技术, 2005, 28(3):3.DOI:10.3969/j.issn.1004-373X.2005.03.025.

[2] 习郑虎.多制式数字基带信号发生技术[D].中北大学,2011.DOI:CNKI:CDMD:2.1011.156155.

[3] 屈维,何琴,刘继红.Square m-QAM相干光通信系统的载波相位估计算法[J].光通信技术, 2013, 37(7):3.DOI:10.3969/j.issn.1002-5561.2013.07.003.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值