【Wilcoxon 检验】威尔科克森秩检验[非参数检验]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在统计学领域,对数据进行推断是至关重要的一环。我们常常需要通过样本数据来推断总体特征,例如比较不同组别之间的差异,或者判断某种处理是否产生了显著影响。传统的参数检验方法,如 t 检验和方差分析,在应用时通常需要满足一些前提假设,例如数据服从正态分布、方差齐性等。然而,在实际应用中,这些假设往往难以满足,或者我们对数据的分布信息知之甚少。此时,非参数检验方法便展现出其独特的优势。非参数检验不依赖于特定的总体分布形式,具有更广泛的适用性。在众多非参数检验方法中,威尔科克森秩检验(Wilcoxon rank-sum test),又称曼-惠特尼 U 检验(Mann-Whitney U test),是一种应用广泛且重要的非参数检验方法,用于比较两个独立样本是否来自同一总体。本文将深入探讨威尔科克森秩检验的原理、应用场景、检验步骤、优缺点以及与其他检验方法的比较。

威尔科克森秩检验的原理

威尔科克森秩检验的核心思想在于利用数据的秩(rank)信息而非原始数值来进行比较。其基本原理可以概括为:如果两个独立样本来自同一总体,那么将两个样本的数据合并后,随机分配给两个组别,两组数据的秩的总和应该大致相等。如果其中一组数据的秩总和显著大于另一组,则可以推断两组数据可能来自不同的总体。

具体来说,威尔科克森秩检验的步骤大致如下:

  1. 合并样本并排序:

     将两个独立样本的数据合并,然后对所有数据进行排序,从小到大或从大到小。

  2. 赋予秩:

     根据排序结果,为每个数据点赋予对应的秩。最小的数据点秩为 1,次小的数据点秩为 2,以此类推。对于并列的数据,赋予它们平均秩。

  3. 计算秩和:

     分别计算两个样本的秩之和。

  4. 计算检验统计量:

     根据秩和计算威尔科克森检验统计量。常用的统计量有两种形式,一种是 U 统计量(曼-惠特尼 U 统计量),另一种是 W 统计量(威尔科克森秩和统计量)。两种统计量之间存在一定的转换关系,其本质是一致的。

  5. 确定 P 值:

     将计算出的检验统计量与理论分布进行比较,或者通过置换检验(permutation test)来计算观察到的结果出现的概率,即 P 值。

  6. 做出结论:

     如果 P 值小于预设的显著性水平(通常为 0.05),则拒绝原假设,认为两个样本来自不同的总体;如果 P 值大于或等于显著性水平,则不拒绝原假设,认为没有充分证据表明两个样本来自不同的总体。

威尔科克森秩检验的原假设通常是两个样本来自具有相同分布的总体,而备择假设则是两个样本来自分布不同的总体。需要注意的是,这里的“分布不同”可以是位置参数(如中位数)不同,也可以是形状不同,或者两者都不同。然而,在实践中,当两组数据的形状相似时,威尔科克森秩检验对位置参数的差异更为敏感,可以被看作是对中位数差异的检验。

威尔科克森秩检验的应用场景

威尔科克森秩检验因其非参数的特性,在各种领域都有广泛的应用,特别是在以下情况下:

  • 数据不满足参数检验的假设:

     当样本数据不满足正态分布或方差齐性等参数检验的前提假设时,威尔科克森秩检验是首选的替代方法。例如,当数据呈现偏态分布或含有异常值时,秩检验更为稳健。

  • 数据为等级数据或定序数据:

     当数据本身就是等级或顺序时,例如对产品满意度的评分(非常好、好、一般、差),此时使用基于数值的参数检验方法并不合适,而秩检验则能有效地利用数据的顺序信息。

  • 样本量较小:

     当样本量较小时,参数检验的效力会受到影响,而威尔科克森秩检验在小样本情况下也能保持较好的检验效力。

  • 对异常值不敏感:

     秩检验是基于秩的,异常值对秩的影响相对较小,因此该方法对异常值具有一定的鲁棒性。

具体应用场景例如:

  • 医学研究:

     比较两种不同药物治疗效果,如果疗效数据是患者症状改善的等级或评分。

  • 心理学研究:

     比较不同教学方法对学生学习成绩的影响,如果成绩数据是非正态分布的。

  • 市场调查:

     比较两种不同广告方案对消费者购买意愿的影响,如果购买意愿数据是定序的。

  • 环境科学:

     比较不同地区污染物浓度水平,如果污染物浓度数据呈现偏态分布。

威尔科克森秩检验的优缺点

优点:

  • 非参数性:

     不依赖于特定的总体分布假设,适用范围广。

  • 对异常值不敏感:

     基于秩的计算方法使其对数据中的异常值具有一定的鲁棒性。

  • 适用于等级数据和定序数据:

     能够有效处理非连续性数据。

  • 在小样本情况下表现良好:

     相对于参数检验,在样本量较小时也能保持较好的检验效力。

缺点:

  • 信息损失:

     与参数检验相比,秩检验放弃了数据的原始数值信息,只利用了数据的相对顺序,可能导致一定的信息损失。

  • 效力相对较低:

     如果数据确实满足参数检验的假设,参数检验通常比非参数检验具有更高的效力(更容易检测出真实存在的差异)。

  • 解释性相对较弱:

     秩和或 U 统计量的物理意义不如均值或标准差直观。

威尔科克森秩检验与曼-惠特尼 U 检验

需要澄清的是,威尔科克森秩检验和曼-惠特尼 U 检验是同一种检验方法的不同名称。曼-惠特尼 U 检验是首先提出的,其检验统计量是 U 统计量。后来,威尔科克森提出了基于秩和的检验统计量 W,并证明了 U 统计量和 W 统计量之间存在简单的线性关系,因此这两种检验方法是等价的。在实际应用中,通常使用任一名称都表示这种非参数的两独立样本检验。

威尔科克森符号秩检验

除了用于独立样本的威尔科克森秩检验(曼-惠特尼 U 检验),还有一种相关的非参数检验方法,称为威尔科克森符号秩检验(Wilcoxon signed-rank test)。威尔科克森符号秩检验用于配对样本的非参数检验,例如在同一组被试接受某种处理前后进行测量,或者比较两个配对样本之间的差异。其原理是基于配对差异的绝对值的秩和以及差异的正负号来进行检验。这与独立样本的威尔科克森秩检验在原理和应用场景上有所不同,但都属于威尔科克森家族的非参数检验方法。

与其他检验方法的比较

  • 与独立样本 t 检验的比较:

     当数据满足正态分布和方差齐性的前提假设时,独立样本 t 检验通常比威尔科克森秩检验具有更高的检验效力。然而,当这些假设不满足时,威尔科克森秩检验是更稳健的选择。

  • 与方差分析的比较:

     方差分析用于比较三个或更多独立样本的均值是否有显著差异。当数据不满足方差分析的假设时,可以使用非参数的克鲁斯卡尔-沃利斯检验(Kruskal-Wallis test)作为替代,该检验是威尔科克森秩检验在多组情况下的推广。

  • 与配对样本 t 检验的比较:

     配对样本 t 检验用于比较两个配对样本的均值是否有显著差异。当数据不满足配对样本 t 检验的假设时,可以使用威尔科克森符号秩检验作为替代。

结论

威尔科克森秩检验作为一种重要的非参数检验方法,在统计分析中扮演着不可或缺的角色。它不依赖于严格的总体分布假设,对异常值具有一定的鲁棒性,特别适用于数据不满足参数检验前提或为等级/定序数据的情况。了解其原理、应用场景和检验步骤,能够帮助我们在实际数据分析中选择合适的统计方法,并对检验结果做出正确的解释。尽管它可能存在一些信息损失和效力相对较低的缺点,但在许多实际应用中,威尔科克森秩检验提供了可靠的替代方案,为我们进行有效的统计推断提供了强大的工具。在进行数据分析时,根据数据的特点和研究目的,权衡各种检验方法的优缺点,选择最适合的统计方法是至关重要的。

⛳️ 运行结果

🔗 参考文献

[1] 黄华,张建卿,赵俊涛,等.新型血管保存液对冠状动脉旁路移植术后大隐静脉桥血管早期通畅的影响[J].心肺血管病杂志, 2024, 43(3):286-290.

[2] 李春艳,刘海波.我国上市公司融资行为的变化趋势与发展对策[J].当代经济研究, 2003(9):5.

[3] 于力超,赵海涛.一种适用于小子样情形的权重确定方法[2025-05-08].

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值