✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
人类对飞行的探索从未止步。从莱特兄弟的首次成功飞行到现代超音速客机,技术的进步不断拓展着飞行的边界。在航空领域,垂直起降(Vertical Take-Off and Landing, VTOL)飞行器以其独特的灵活性和无需跑道的优势,在军事、民用、物流等诸多领域展现出巨大的应用潜力。传统的VTOL飞行器,如直升机,虽然具备垂直起降能力,但在水平高速巡航方面存在固有的限制。与此同时,固定翼飞行器则以其高效率和高速巡航能力著称,却受限于对跑道的依赖。将这两种飞行模式的优势相结合,即设计和控制能够实现垂直起降并进行高效水平巡航的复合翼或倾转旋翼等结构的VTOL飞行器,已成为当前航空领域研究的热点。特别是将固定翼的升力特性与四旋翼的垂直起降和悬停控制能力相结合,构建能够自主飞行的无人机系统,不仅能够克服传统飞行器的局限性,更能显著提升任务执行效率和适用范围。本文旨在深入探讨固定翼与四旋翼整合式垂直起降飞行器的设计原理、关键控制技术以及自主飞行研究的进展,以期为相关领域的进一步发展提供理论基础和技术参考。
第一部分:固定翼与四旋翼整合式垂直起降飞行器的设计
整合固定翼和四旋翼的VTOL飞行器在构型上存在多种可能性,每种构型都有其独特的优缺点和适用场景。主流的设计思路通常围绕如何有效地在垂直起降和水平巡航模式之间进行转换,并兼顾两种模式下的气动效率和控制性能。
-
构型分析:
- 倾转旋翼构型(Tiltrotor/Tilting Propeller):
这是目前较为成熟的一种整合构型,最具代表性的例子是V-22“鱼鹰”旋翼机。其核心思想是将负责垂直起降的旋翼(通常是两到四个)安装在可倾转的机翼或支架上。在垂直起降阶段,旋翼向上倾斜,作为旋翼飞行器提供升力;在水平巡航阶段,旋翼向前倾转,作为螺旋桨提供推力,而机翼则提供主要的升力。这种构型能够有效地实现垂直起降和高速巡航,但在模式转换过程中存在复杂的气动相互作用和控制挑战。
- 复合翼构型(Compound Wing):
这种构型通常在固定翼飞机的机身上增加额外的垂直升力装置,例如独立的垂直升力旋翼或涵道风扇。在垂直起降阶段,垂直升力装置提供升力;在水平巡航阶段,这些装置停止工作或收起,由机翼提供升力,水平推力则由独立的推进系统提供。这种构型可以简化模式转换过程,但额外的升力装置会增加飞行器的重量和复杂性。
- 分布式电推进(Distributed Electric Propulsion, DEP)构型:
随着电推进技术的发展,利用多个小型电动机和螺旋桨集成到机翼或机身上,实现垂直起降和水平巡航成为可能。例如,可以将多个旋翼均匀分布在机翼前缘,垂直起降时共同提供升力;巡航时部分旋翼提供推力,同时利用机翼产生升力。这种构型具有冗余性高、噪声低、灵活度高等优点,但需要复杂的电机控制和电源管理系统。
- 倾转旋翼构型(Tiltrotor/Tilting Propeller):
-
气动设计考量:
整合式VTOL飞行器的气动设计需要兼顾垂直起降模式下的悬停稳定性和水平巡航模式下的气动效率。在悬停模式下,需要考虑旋翼下洗流对机体和地面的影响,以及旋翼之间的干扰。在水平巡航模式下,机翼的设计需要保证较高的升阻比,同时考虑到模式转换过程中机翼与旋翼之间的气动耦合效应。对于倾转旋翼构型,旋翼/螺旋桨的设计需要能够在不同倾角下高效工作。对于复合翼构型,附加的垂直升力装置需要尽可能减小其在巡航模式下的阻力。分布式电推进构型则需要优化旋翼的布局和尺寸,以实现最优的气动性能。
-
结构设计考量:
整合式VTOL飞行器的结构设计必须满足垂直起降和水平巡航两种模式下的载荷要求。特别是模式转换机构(如倾转机构)的设计,需要具备高强度、高可靠性和轻量化的特点。同时,由于电推进系统的普及,电池等储能设备的布局和结构强度也是重要的考量因素。振动和噪声控制也是结构设计中需要解决的问题,尤其是在旋翼工作时。
第二部分:关键控制技术研究
整合式VTOL飞行器的控制系统需要能够实现不同飞行模式之间的平稳过渡,并在各种飞行状态下保持稳定和精准的控制。相对于传统的单一模式飞行器,其控制系统更加复杂,需要处理多模态动力学、非线性效应和模式转换过程中的耦合效应。
-
多模态动力学建模与分析:
整合式VTOL飞行器在不同飞行模式下具有显著不同的动力学特性。例如,在垂直起降模式下,其动力学与四旋翼类似,主要依赖于旋翼产生的升力和力矩进行姿态和位置控制;在水平巡航模式下,其动力学与固定翼类似,主要依赖于机翼产生的升力和舵面产生的力矩进行姿态和轨迹控制。模式转换过程中,两种模式的动力学特性相互耦合,需要建立能够描述整个飞行包线内飞行器运动状态的精确数学模型。常用的建模方法包括基于牛顿-欧拉方程的动力学建模和基于Lagrange方程的建模,同时需要考虑旋翼/螺旋桨、机翼、舵面以及模式转换机构之间的相互作用。
-
模式转换控制:
模式转换是整合式VTOL飞行器的关键环节,其平稳性和安全性直接影响飞行器的性能。模式转换控制需要根据当前的飞行状态和目标飞行模式,规划合理的转换轨迹和控制律。这通常涉及到对旋翼倾角、油门、舵面等执行器的协同控制。常用的模式转换控制策略包括基于增益调度的方法、基于模型预测控制(MPC)的方法以及基于最优控制的方法。需要特别注意的是,在模式转换过程中,飞行器的动力学特性是时变的,因此需要采用自适应或鲁棒控制策略来应对不确定性和外部扰动。
-
姿态与轨迹控制:
在垂直起降和悬停模式下,飞行器的姿态和位置控制与传统四旋翼类似,可以采用PID控制、非线性控制(如反步法)等方法。在水平巡航模式下,飞行器的姿态和轨迹控制与固定翼类似,可以采用传统的自动驾驶仪设计方法。然而,对于整合式VTOL飞行器,需要在不同模式下实现无缝切换,因此需要设计能够跨模式工作的统一控制框架或采用模式切换控制策略。例如,可以设计基于模糊逻辑或神经网络的控制器,根据当前的飞行模式和状态切换控制律。
-
自主飞行控制:
实现整合式VTOL飞行器的自主飞行是提升其应用价值的关键。自主飞行控制包括感知、决策和执行三个层面。
- 感知:
需要利用各种传感器(如GPS、IMU、视觉传感器、激光雷达等)获取飞行器的位置、姿态、速度、环境信息等。特别是对于复杂环境下的自主飞行,需要具备障碍物感知与避障能力、目标识别与跟踪能力等。
- 决策:
基于感知信息,自主决策系统需要规划飞行任务、生成最优飞行轨迹、制定控制策略等。这通常涉及到路径规划、任务分配、决策树等算法。对于具有多种飞行模式的VTOL飞行器,决策系统还需要根据任务需求和环境条件自主选择最优的飞行模式和模式转换时机。
- 执行:
控制系统根据决策结果,生成控制指令驱动执行器(如旋翼、舵面、倾转机构等)实现预期的飞行状态。
- 感知:
第三部分:自主飞行研究进展与挑战
近年来,随着人工智能、计算机视觉和控制理论的发展,整合式VTOL飞行器的自主飞行研究取得了显著进展。
-
高精度导航与定位: 融合多传感器信息(如GPS、IMU、视觉、激光雷达)的导航算法能够提高飞行器在复杂环境下的定位精度,例如,基于视觉SLAM(Simultaneous Localization and Mapping)的技术可以帮助飞行器在GPS信号受阻的环境下进行自主导航。
-
智能路径规划与轨迹跟踪: 考虑飞行器动力学约束和环境限制的智能路径规划算法能够生成最优或可行的飞行轨迹。同时,鲁棒的轨迹跟踪控制算法能够保证飞行器精确地沿着规划的轨迹飞行,并应对外部扰动。
-
环境感知与避障: 利用机载传感器对环境进行实时感知,构建环境地图,并结合避障算法,使飞行器能够在复杂环境中安全自主飞行。基于深度学习的目标检测和识别技术可以帮助飞行器识别和跟踪任务目标。
-
学习型控制: 将机器学习技术应用于飞行器控制,例如强化学习可以用于优化控制策略或学习复杂的模式转换控制律,从而提升飞行器的适应性和鲁棒性。
尽管取得了显著进展,整合式VTOL飞行器的自主飞行仍然面临诸多挑战:
- 多模态动力学的复杂性:
如何建立精确且能够跨模式工作的动力学模型是控制设计的难点。
- 模式转换的平稳性与安全性:
如何实现平稳安全的模式转换,并应对模式转换过程中的不确定性,仍然是重要的研究方向。
- 复杂环境下的感知与决策:
在非结构化、动态变化的环境中进行高精度感知、智能决策和鲁棒避障仍然具有挑战性。
- 系统集成与可靠性:
将复杂的硬件系统、软件算法和多模态控制系统集成起来,并保证系统的可靠性和安全性,是实现自主飞行的关键。
结论
固定翼与四旋翼整合式垂直起降飞行器凭借其兼具垂直起降和高效水平巡航能力的优势,在未来航空领域具有广阔的应用前景。其设计涉及多样的构型选择和复杂的气动、结构考量。关键控制技术的研究需要深入理解多模态动力学特性,并设计能够实现平稳模式转换、精准姿态与轨迹控制以及鲁棒自主飞行的控制系统。尽管自主飞行研究已经取得了显著进展,但仍面临多模态动力学复杂性、模式转换控制、复杂环境感知与决策以及系统集成等方面的挑战。
未来研究方向应着力于:
- 更先进的构型设计:
探索新型气动布局和推进系统,进一步提升飞行器的效率和性能。
- 智能化控制算法:
发展基于机器学习和人工智能的自适应、学习型控制策略,提高飞行器在复杂环境下的自主性和鲁棒性。
- 高精度环境感知与理解:
结合多源传感器信息,构建高精度环境地图,并发展更智能的环境理解和决策能力。
- 可靠性与安全性研究:
加强系统集成、故障检测与诊断、冗余设计等方面的研究,确保自主飞行的安全性。
随着技术的不断发展,相信固定翼与四旋翼整合式垂直起降飞行器将在未来扮演越来越重要的角色,为人类的交通、物流、监测等领域带来革命性的变革。对这类飞行器的深入研究和技术突破,不仅有助于推动航空技术的进步,也将为构建更加智能、高效和安全的未来空中交通系统奠定坚实基础。
⛳️ 运行结果
🔗 参考文献
[1] 齐书浩.微型四旋翼飞行器总体设计及其运动控制[D].上海交通大学,2013.
[2] 乔维维.四旋翼飞行器飞行控制系统研究与仿真[D].中北大学,2012.DOI:10.7666/d.D316360.
[3] 丛梦苑.基于线性二次调节器的四旋翼飞行器控制系统的设计与研究[J].哈尔滨工程大学, 2011.DOI:10.7666/d.y2053908.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇