地址
https://github.com/intel-isl/Open3D-ML
需要下载数据集:SemanticKITTI
先安装依赖项:
# To install a compatible version of TensorFlow
pip install -r requirements-tensorflow.txt
# To install a compatible version of PyTorch with CUDA
pip install -r requirements-torch-cuda.txt
可视化demo:
import open3d.ml.torch as ml3d # or open3d.ml.tf as ml3d
# construct a dataset by specifying dataset_path
dataset = ml3d.datasets.SemanticKITTI(dataset_path='/path/to/SemanticKITTI/')
# get the 'all' split that combines training, validation and test set
all_split = dataset.get_split('all')
# print the attributes of the first datum
print(all_split.get_attr(0))
# print the shape of the first point cloud
print(all_split.get_data(0)['point'].shape)
# show the first 100 frames using the visualizer
vis = ml3d.vis.Visualizer()
vis.visualize_dataset(dataset, 'all', indices=range(100))
有各种网络的比较结果和链接
本文介绍如何使用SemanticKITTI数据集与Open3D-ML工具进行点云数据的处理及可视化。首先需要安装TensorFlow和PyTorch等依赖项,并下载SemanticKITTI数据集。通过Python代码演示了如何加载数据集、获取数据属性和点云形状,并利用Visualizer显示前100帧的点云数据。
893

被折叠的 条评论
为什么被折叠?



