reid笔记 yolov5 deepsort

该博客介绍了如何使用YoloV5、Deepsort和Fast-ReID构建一个完整的行人重识别系统。作者通过用Fast-ReID训练的模型替换Deepsort的原始特征提取模型,提升了跟踪性能。此外,该系统还具备行人计数功能,能统计摄像头内出现的总人数以及穿越特定区域的行人数量。项目源代码已在GitHub上开源。
摘要由CSDN通过智能技术生成
Human parsing has been extensively studied recently (Yamaguchi et al. 2012; Xia et al. 2017) due to its wide applications in many important scenarios. Mainstream fashion parsing models (i.e., parsers) focus on parsing the high-resolution and clean images. However, directly applying the parsers trained on benchmarks of high-quality samples to a particular application scenario in the wild, e.g., a canteen, airport or workplace, often gives non-satisfactory performance due to domain shift. In this paper, we explore a new and challenging cross-domain human parsing problem: taking the benchmark dataset with extensive pixel-wise labeling as the source domain, how to obtain a satisfactory parser on a new target domain without requiring any additional manual labeling? To this end, we propose a novel and efficient crossdomain human parsing model to bridge the cross-domain differences in terms of visual appearance and environment conditions and fully exploit commonalities across domains. Our proposed model explicitly learns a feature compensation network, which is specialized for mitigating the cross-domain differences. A discriminative feature adversarial network is introduced to supervise the feature compensation to effectively reduces the discrepancy between feature distributions of two domains. Besides, our proposed model also introduces a structured label adversarial network to guide the parsing results of the target domain to follow the high-order relationships of the structured labels shared across domains. The proposed framework is end-to-end trainable, practical and scalable in real applications. Extensive experiments are conducted where LIP dataset is the source domain and 4 different datasets including surveillance videos, movies and runway shows without any annotations, are evaluated as target domains. The results consistently confirm data efficiency and performance advantages of the proposed method for the challenging cross-domain human parsing problem. Abstract—This paper presents a robust Joint Discriminative appearance model based Tracking method using online random forests and mid-level feature (superpixels). To achieve superpixel- wise discriminative ability, we propose a joint appearance model that consists of two random forest based models, i.e., the Background-Target discriminative Model (BTM) and Distractor- Target discriminative Model (DTM). More specifically, the BTM effectively learns discriminative information between the target object and background. In contrast, the DTM is used to suppress distracting superpixels which significantly improves the tracker’s robustness and alleviates the drifting problem. A novel online random forest regression algorithm is proposed to build the two models. The BTM and DTM are linearly combined into a joint model to compute a confidence map. Tracking results are estimated using the confidence map, where the position and scale of the target are estimated orderly. Furthermore, we design a model updating strategy to adapt the appearance changes over time by discarding degraded trees of the BTM and DTM and initializing new trees as replacements. We test the proposed tracking method on two large tracking benchmarks, the CVPR2013 tracking benchmark and VOT2014 tracking challenge. Experimental results show that the tracker runs at real-time speed and achieves favorable tracking performance compared with the state-of-the-art methods. The results also sug- gest that the DTM improves tracking performance significantly and plays an important role in robust tracking.
### 回答1: b'yolov5'、'deepsort' 和 'fast-reid' 都是计算机视觉领域的开源代码库。b'yolov5' 是一种目标检测算法,采用卷积神经网络进行目标检测。'deepsort' 是一种多目标跟踪算法,可以对多个目标进行跟踪。'fast-reid' 是一种人脸识别算法库,可用于训练和部署人脸识别算法。这些算法库都可以在许多不同的应用程序中使用,如视频监控和自动驾驶。 ### 回答2: YOLOv5DeepSORTFastReID都是目标检测和追踪领域的优秀算法。 首先,YOLOv5是目标检测算法中的一种,该算法基于深度卷积神经网络实现快速高效的目标检测。与YOLOv3相比,YOLOv5具有更高的精度和速度,并且在小目标检测和极端环境下的目标检测方面表现出色。该算法对大型数据集进行了准确性与效率之间的平衡。 其次,DeepSORT是一种基于深度学习的目标跟踪算法,可以实现对运动目标的实时跟踪。该算法可以对运动目标进行高质量的检测和跟踪,并且可以解决在多目标、交叠目标、视角变化和遮挡等复杂情况下的目标跟踪问题。该算法可以用于视频监控、自动驾驶等应用领域。 最后,FastReID是一种用于人物识别和关键点检测的深度学习算法。该算法可以进行快速和 accurate 的人物识别,同时可以检测出人物的关键点。该算法可以用于视频监控、人物识别、智能人脸识别等多个应用领域。 三种算法都是基于深度学习的优秀算法,可以在视觉领域中实现高效的目标检测和跟踪,并且各有所长。在实际应用中,可以根据场景和需求选择不同的算法来实现目标检测和跟踪的最优效果。 ### 回答3: Yolov5DeepSortFast-ReID都是计算机视觉领域中非常流行的深度神经网络模型。这些模型都具有出色的目标检测、目标跟踪和人员识别的能力,在安防、工业、医疗等领域中有着广泛的应用。 首先,Yolov5是一种目标检测算法,它使用深度学习技术和卷积神经网络,可以快速并且准确地检测图像中的各种物体,并且可以在低延迟的情况下运行。Yolov5可以快速地检测到图像中的物体,并将其分类为不同的类别。它的检测准确度较高,在速度和精度之间达到了一个很好的平衡。 其次,DeepSort是一种多目标跟踪算法,它是在目标检测的基础上,进行多目标跟踪的一种算法。DeepSort通过提供一个深度嵌入器进行目标匹配,这个嵌入器使用卷积神经网络来学习目标的视觉特征,使多目标跟踪算法具有更加准确的匹配能力。 最后,Fast-ReID是一种人员识别算法,它通过深度学习技术,学习人员在图像中的特征,从而进行人员识别。Fast-ReID具有高精度和高效率的特点,可以在大规模数据集上进行快速的人员识别。 总之,Yolov5DeepSortFast-ReID都是非常优秀的深度神经网络模型,它们在目标检测、目标跟踪和人员识别方面具有出色的性能,为计算机视觉领域的应用提供了重要的支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值