自动驾驶作为目前火热的一个AI方向,每天都会有层出不穷的新框架和模型出现。想要得到一个性能优良的模型,前提你得有一个高质量的训练数据,这才是模型性能最强的保障。下面对此进行如下总结:
1、开源数据集
(1)kitti
KITTI数据集是最早的自动驾驶数据集之一,主要用于城市和乡村道路环境的自动驾驶研究。其中KITTI数据集包括多种传感器数据,包括立体相机、激光雷达(LiDAR)、GPS和IMU(惯性测量单元)。这些传感器数据可以提供车辆周围环境的精确3D模型和车辆的精确位置。下载参考链接一文多图搞懂KITTI检测数据集下载使用(附网盘链接)_kitti数据集velodyne下载教程-CSDN博客
KITTI 3D目标检测数据集是自动驾驶场景中广泛使用的3D目标检测基准。该数据集包括从城市交通中行驶的车辆捕获的LiDAR点云和摄像头图像。数据集中的目标包括汽车、行人和骑自行车的人,数据是在各种照明和天气条件下收集的。LiDAR数据使用安装在车顶上的Velodyne HDL-64E传感器捕获,而摄像头图像则使用安装在挡风玻璃上的彩