原文链接:https://arxiv.org/abs/2402.03307
1. 引言
从2D图像进行动态场景的3D重建并合成新视图图像仍然面临挑战。一些方法联合建模3D场景与其动态,但因时空纠缠的复杂性,这些方法对细节的保留存在缺陷;其它方法则进行时空解耦,学习静态正则空间,并预测变形场以考虑时间变化,但其难以处理物体突然出现与消失的情况。此外,基于体渲染的方法需要在大量射线上进行密集采样,不能支持实时渲染。
本文将静态场景新视图合成方法3D GS扩展到4D,提出时空表达,使3D GS能适应动态场景。将3D场景动态视为4D时空高斯椭球的时间切片(如下图所示为XY到XYT的扩展)。此外,在时间维度扩展剪枝-分裂机制,使4D高斯可以表达突然出现和消失的物体。
本文选择4D转子(rotor,旋转算子),一种时空可分离的旋转表示,来表达4D旋转。4D转子在时间维度为0时,等价于空间的3D旋转,因此也可用于静态场景。
此外,本文增强了优化策略,引入新的正则化项来稳定和促进动态重建。熵损失使高斯的不透明度趋近0或1,能有效去除“漂浮物”。4D一致性损失能正则化高斯运动,从而进行更一致的动态重建。
3. 方法
3.2 4D高斯溅射
3.2.1 基于转子的4D高斯表达
4D高斯可以表达为4D中心位置 μ 4 D = ( μ x , μ y , μ z , μ t ) \mu_{4D}=(\mu_x,\mu_y,\mu_z,\mu_t) μ4D=(μx,μy,μz,μt)和4D协方差矩阵 Σ 4 D \Sigma_{4D} Σ4D:
G 4 D ( x ) = exp [ − 1 2 ( x − μ 4 D ) T Σ 4 D − 1 ( x − μ 4 D ) ] G_{4D}(x)=\exp[-\frac1 2(x-\mu_{4D})^T\Sigma^{-1}_{4D}(x-\mu_{4D})] G4D(x)=exp[−21(x−μ4D)TΣ4D−1(x−μ4D)]
协方差矩阵可进一步表达为4D缩放 S 4 D = diag ( s x , s y , s z , s t ) S_{4D}=\text{diag}(s_x,s_y,s_z,s_t) S4D=diag(sx,sy,sz,st)和4D旋转 R 4 D R_{4D} R4D:
Σ 4 D = R 4 D S 4 D S 4 D T R 4 D T \Sigma_{4D}=R_{4D}S_{4D}S_{4D}^TR_{4D}^T Σ4D=R4DS4DS4DTR4DT
类似3D旋转矩阵可转化为四元数,4D旋转矩阵 R 4 D R_{4D} R4D可转化为为4D转子 r r r,由8个分量组成:
r = s + b 01 e 01 + b 02 e 02 + b 03 e 03 + b 12 e 12 + b 13 e 13 + b 23