【论文笔记】4D Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes

本文提出了一种扩展3DGS方法到4D的框架,利用4D高斯和4D转子表示动态场景,引入熵损失和4D一致性损失进行动态重建,结果显示在速度和精度上优于基于NeRF和其他高斯方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文链接:https://arxiv.org/abs/2402.03307

1. 引言

从2D图像进行动态场景的3D重建并合成新视图图像仍然面临挑战。一些方法联合建模3D场景与其动态,但因时空纠缠的复杂性,这些方法对细节的保留存在缺陷;其它方法则进行时空解耦,学习静态正则空间,并预测变形场以考虑时间变化,但其难以处理物体突然出现与消失的情况。此外,基于体渲染的方法需要在大量射线上进行密集采样,不能支持实时渲染。

本文将静态场景新视图合成方法3D GS扩展到4D,提出时空表达,使3D GS能适应动态场景。将3D场景动态视为4D时空高斯椭球的时间切片(如下图所示为XY到XYT的扩展)。此外,在时间维度扩展剪枝-分裂机制,使4D高斯可以表达突然出现和消失的物体。
在这里插入图片描述
本文选择4D转子(rotor,旋转算子),一种时空可分离的旋转表示,来表达4D旋转。4D转子在时间维度为0时,等价于空间的3D旋转,因此也可用于静态场景。

此外,本文增强了优化策略,引入新的正则化项来稳定和促进动态重建。熵损失使高斯的不透明度趋近0或1,能有效去除“漂浮物”。4D一致性损失能正则化高斯运动,从而进行更一致的动态重建。

3. 方法

在这里插入图片描述

3.2 4D高斯溅射

3.2.1 基于转子的4D高斯表达

4D高斯可以表达为4D中心位置 μ 4 D = ( μ x , μ y , μ z , μ t ) \mu_{4D}=(\mu_x,\mu_y,\mu_z,\mu_t) μ4D=(μx,μy,μz,μt)和4D协方差矩阵 Σ 4 D \Sigma_{4D} Σ4D
G 4 D ( x ) = exp ⁡ [ − 1 2 ( x − μ 4 D ) T Σ 4 D − 1 ( x − μ 4 D ) ] G_{4D}(x)=\exp[-\frac1 2(x-\mu_{4D})^T\Sigma^{-1}_{4D}(x-\mu_{4D})] G4D(x)=exp[21(xμ4D)TΣ4D1(xμ4D)]

协方差矩阵可进一步表达为4D缩放 S 4 D = diag ( s x , s y , s z , s t ) S_{4D}=\text{diag}(s_x,s_y,s_z,s_t) S4D=diag(sx,sy,sz,st)和4D旋转 R 4 D R_{4D} R4D
Σ 4 D = R 4 D S 4 D S 4 D T R 4 D T \Sigma_{4D}=R_{4D}S_{4D}S_{4D}^TR_{4D}^T Σ4D=R4DS4DS4DTR4DT

类似3D旋转矩阵可转化为四元数,4D旋转矩阵 R 4 D R_{4D} R4D可转化为为4D转子 r r r,由8个分量组成:
r = s + b 01 e 01 + b 02 e 02 + b 03 e 03 + b 12 e 12 + b 13 e 13 + b 23

### 使用球形高斯加速3D高斯点绘的技术细节 #### SG-Splatting 技术概述 SG-Splatting 是一种用于加速 3D 高斯点绘 (3D Gaussian Splatting) 的技术,通过引入球形高斯函数来简化计算并提高渲染效率。该方法特别适用于实时辐射场渲染场景中的复杂光照效果模拟。 #### 实现原理 为了有效处理大规模的三维数据集,在传统基础上进行了改进: - **球形高斯表示**:采用球形高斯分布代替标准椭圆体模型,使得每个粒子可以被更简单地描述为位置、方向以及强度参数组合而成的形式[^1]。 - **高效采样策略**:利用球形对称性质减少不必要的冗余运算;同时针对不同视角下的可见性变化设计自适应调整机制以优化性能表现[^2]。 - **颜色分解**:为进一步增强对于具有镜面反射特性的物体表面特征捕捉能力,提出了将色彩信息拆解成漫反射与镜面反射两部分的方法。这不仅有助于区分高低频信号差异,还能够更好地匹配实际物理现象中光线传播规律[^3]。 ```python import numpy as np def spherical_gaussian(position, direction, intensity): """ 计算单个球形高斯项 参数: position -- 中心坐标向量 direction -- 方向单位向量 intensity -- 强度系数 返回值: sg_value -- 球形高斯响应值 """ # 假设输入已经过预处理转换到局部坐标系下 r_squared = sum([p*p for p in position]) dot_product = sum([d * p for d,p in zip(direction,position)]) exponent_term = -(r_squared - dot_product*dot_product)/(2*(intensity**2)) normalization_factor = 1 / ((np.sqrt(2*np.pi)*abs(intensity))**(len(position)-1)) return normalization_factor * np.exp(exponent_term) ``` #### 性能优势 得益于上述特性,基于球形高斯的 splatting 方法能够在保持高质量视觉呈现的同时显著降低计算成本,尤其适合应用于动态环境中快速更新视图的需求场合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值