Attention最早出现于NLP中,随着不断的发展,cv中对Attention的应用不断增加,早期两个比较经典的视觉Attention机制分别是SENet和CBAM,分别在17年和18年的大赛中夺魁,本文即对两种算法进行简单的介绍。
SENet
我们可以通过卷积得到feature map,SENet认为这个feature map中每个通道的重要程度是不一样的,应该给其分配权值,即代表每个通道各自的重要程度,具体的结构示意图如下:
在传统的Inception模型的基础上,增加上述module。假设输入是一张 c ∗ h ∗ w c*h*w c∗h∗w的特征图,首先经过global pooling,将维度变为 c ∗ 1 ∗ 1 c*1*1 c∗1∗1,随后经过FC层,将维度变为 c / 16 ∗ 1 ∗ 1 c/16*1*1 c/16∗1∗