视觉Attention之SENet和CBAM概述

Attention最早出现于NLP中,随着不断的发展,cv中对Attention的应用不断增加,早期两个比较经典的视觉Attention机制分别是SENet和CBAM,分别在17年和18年的大赛中夺魁,本文即对两种算法进行简单的介绍。

SENet

我们可以通过卷积得到feature map,SENet认为这个feature map中每个通道的重要程度是不一样的,应该给其分配权值,即代表每个通道各自的重要程度,具体的结构示意图如下:

在这里插入图片描述
在传统的Inception模型的基础上,增加上述module。假设输入是一张 c ∗ h ∗ w c*h*w chw的特征图,首先经过global pooling,将维度变为 c ∗ 1 ∗ 1 c*1*1 c11,随后经过FC层,将维度变为 c / 16 ∗ 1 ∗ 1 c/16*1*1 c/161

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值