TransFormer学习之基础知识:STN、SENet、CBAM、Self-Attention

1.空间注意力机制STN

参考链接:STN(Spatial Transformer Networks)
参考链接:通俗易懂的Spatial Transformer Networks(STN)

  • 核心动机: 在空间中捕获重要区域特征(如图像中的数字),将核心区域进行放大居中,使得结果更容易识别
  • 主体结构: 局部网络、参数化网络采样(网络生成器)和差分图像采样
    [图片]

1.1 局部网络(Localisation net)

输入: U,U可以是输入图片也可以是Feature Map
输出: θ \theta θ,局部网络会将重要区域特征进行放大居中, θ \theta θ表示原图到变换后图像之间的变换和平移参数,参考上图(b)列

1.2 网络生成器(Grid generator)

输入:局部网络模块输出的变换关系 θ \theta θ
输出:经过仿射变换后的特征图,参考上图中©列

1.3 差分图像采样(Sample)

Sample 就是用来解决Grid generator模块变换出现小数位置的问题的,当对小数进行仿射变换时,由于取整操作会将变换前不同的位置映射到同一个坐标下。针对这种情况,STN采用双线性插值(Bilinear Interpolation) 进行解决,即根据(x,y)的像素值根据周围坐标的像素值来确定。计算公式如下:
[图片]
[图片]

2.通道注意力之SENet

[图片]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值