1.空间注意力机制STN
参考链接:STN(Spatial Transformer Networks)
参考链接:通俗易懂的Spatial Transformer Networks(STN)
- 核心动机: 在空间中捕获重要区域特征(如图像中的数字),将核心区域进行放大居中,使得结果更容易识别
- 主体结构: 局部网络、参数化网络采样(网络生成器)和差分图像采样
1.1 局部网络(Localisation net)
输入: U,U可以是输入图片也可以是Feature Map
输出: θ \theta θ,局部网络会将重要区域特征进行放大居中, θ \theta θ表示原图到变换后图像之间的变换和平移参数,参考上图(b)列
1.2 网络生成器(Grid generator)
输入:局部网络模块输出的变换关系 θ \theta θ
输出:经过仿射变换后的特征图,参考上图中©列
1.3 差分图像采样(Sample)
Sample 就是用来解决Grid generator模块变换出现小数位置的问题的,当对小数进行仿射变换时,由于取整操作会将变换前不同的位置映射到同一个坐标下。针对这种情况,STN采用双线性插值(Bilinear Interpolation) 进行解决,即根据(x,y)
的像素值根据周围坐标的像素值来确定。计算公式如下: