3D旋转矩阵和向量之间的关系

如何通俗地解释李群和李代数的关系? - 知乎

李群中的三维特殊正交群是一个典型的,且对应有非常直观的应用对象的群,其对应于三维空间的旋转矩阵。那么就以该正交群为例解释李群、李代数,以及两者之间的关系。

三维特殊正交群与三维旋转矩阵的关系

李群(Lie group)是具有群结构的光滑微分流形,其群作用与微分结构相容。李群的名字源于挪威数学家Sophus Lie[1]的姓氏,以其为连续变换群奠定基础。1893年,法文名词groupes de Lie首次出现在李的学生Arthur Tresse的论文第三页中。[2]

 

李群中有一类矩阵李群称为“三维特殊正交群(Special Orthogonal Group)”,其符号表示为   ,其实质是一系列满足两个条件的 阶方阵 [公式] 构成的,其中的元素构成一个可微流形。这两个条件分别是:

可以这样理解其命名:条件   意味着这个群中的每个矩阵都是正交矩阵,这就是其“正交”性;条件 意味着这个群中的任一个正交矩阵的行列式均为正 [公式] ,而非负 [公式] ,而一般的正交矩阵的行列式是可正可负的,这就是其“特殊”性,其实这也意味着旋转矩阵遵循“右手坐标系”;又因为这个群中的矩阵均为 [公式] 阶方阵,所以这个群称为“三维特殊正交群[公式] ”。

右手坐标系

任意一个满足右手坐标系的旋转矩阵恰好都满足上面那两个条件,所以任意满足右手坐标系的三维旋转矩阵均属于群   。

又因为其为“”,那么就必然具有群的那几个性质,简要说就是“封结幺逆”(凤姐咬你),假设取   中任意三个元素 、 [公式][公式] ,那么满足:[3]

  • 封闭性:   ;
  • 结合性:   ;
  • 幺元:   使得 ;
  • 逆元:   使得 .

矩阵指数

在说到   对应的李代数之前,需要先引入矩阵指数(Matrix Exponential)的概念:

矩阵指数可由线性微分方程的解的形式导出,例如有一个简单的标量一阶线性微分方程:

其中,   , ,且初始条件为: [公式] ,那么解为:

其中,指数函数可以展开为无穷级数的形式:

同理,对于三维向量对应的一阶线性微分方程:

其中,   , ,且初始条件为: [公式] ,那么解为:

其中,矩阵指数函数可以展开为无穷级数的形式:

矩阵指数与旋转矩阵的关系

向量旋转示意图

如上图,三维向量   绕着单位旋转轴 ( [公式] )旋转 [公式] 角度,得到三维向量 [公式] 。该旋转运动亦可以视作是三维向量 [公式][公式] 的角速度绕着单位旋转轴 [公式] 从时间 [公式] 运动到时间 [公式] 得到三维向量 [公式]

如果用   来表示旋转路径上向量端点处的位置,用 表示该点的瞬时速度值,则有:

而向量叉乘可以写为左端向量对应的反对称矩阵与右端向量的乘积形式[4]

其中,定义   为反对称矩阵算子,例如: ,那么有:

那么式   就有如下解:

因为角速度为   ,所以这里角度 和时间 [公式] 是可以互换的:

由于反对称矩阵有满足   ,将矩阵指数函数展开有:

因此,三维旋转矩阵   就可以用矩阵指数 的形式来表示。

三维特殊正交群对应的李代数

如果将三维向量   称为三维旋转矩阵 R 对应的指数坐标,那么该三维向量所对应的反对称矩阵 [公式] 则称为三维旋转矩阵 [公式] 对应的矩阵对数,也称为三维特殊正交群 [公式] 对应的李代数,记为 [公式]

总结:

以三维特殊正交群为例,有:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值