YOLOv5改进 | Conv篇 | DiverseBranchBlock(DBB)多元分支模块(有效涨点)

本文详细介绍了如何在YOLOv5中应用Diverse Branch Block (DBB),这是一种增强卷积神经网络性能的技术。DBB通过训练时的复杂分支结构增加特征表达能力,而在推理时转换为单一卷积层,保持高效。文章涵盖了DBB的基本原理、多样化分支结构、训练与推理分离以及如何在YOLOv5中添加DBB的详细步骤,包括代码和yaml配置文件的修改。实验表明,DBB能有效提升YOLOv5的性能,推荐在残差连接、Neck部分和检测头前添加DBB模块。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文带来的改进机制是YOLOv5模型与多元分支模块(Diverse Branch Block)的结合,Diverse Branch Block (DBB) 是一种用于增强卷积神经网络性能的结构重新参数化技术。这种技术的核心在于结合多样化的分支,这些分支具有不同的尺度和复杂度,从而丰富特征空间。我将其放在了YOLOv5的不同位置上均有一定的涨点幅度,同时这个DBB模块的参数量并不会上涨太多,我添加三个该机制到模型中,GFLOPs上涨了0.04。

推荐指数:⭐⭐⭐⭐

打星原因:为什么打四颗星是因为我觉得这个机制的计算量会上涨,这是扣分点,其次涨幅效果也比较一般但是有涨点,当然可能是数据集的原因毕竟不同的数据集效果不同

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

训练结果对比图-> 

目录

 一、本文介绍

二、Diverse Branch Block原理

2.1 Diverse Branch Block的基本原理

2.2 多样化分支结构

 2.3 训练与推理分离

2.4 宏观架构不变

三、Diverse Branch Block的完整代码

四、手把手教你添加Diverse Branch Block机制

4.1 细节修改教程

4.1.1 修改一

​4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 DBB的yaml文件(仔细看这个否则会报错)

4.2.1 DBB的yaml文件一

4.2.2 DBB的yaml文件二

4.2.3 DBB的yaml文件三

### 将注意力机制与 Deformable-LKA 集成至 YOLOv8 #### 1. 注意力机制简介 注意力机制允许模型聚焦于输入数据的关键部分,从而提高特定任务的表现。对于目标检测而言,这有助于更好地捕捉物体边界和细节。 #### 2. Deformable-LKA 组件解析 Deformable-LKA 是一种结合了大卷积核的感受野优势与可变形卷积灵活性的新型注意力模块[^3]。它能够动态调整卷积操作的位置偏移量,使得网络可以灵活应对不同尺度的目标对象及其变化形态。 #### 3. 在 YOLOv8 中集成 Deformable-LKA 为了在 YOLOv8 上实现该功能,需按照如下方式修改架构: - **替换原有层**:将原有的标准卷积层替换成带有 Deformable-LKA 的版本。 - **位置选择**: - 对于 C2f 层次结构中的某些中间特征图应用此机制; - 或者是在最终预测头部之前加入额外的一层或多层含有 Deformable-LKA 的组件。 ```python from yolov8.models import * import torch.nn as nn class DeformConvWithLKA(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=7, stride=1, padding=3): super().__init__() self.offset_conv = nn.Conv2d(in_channels, 2 * (kernel_size**2), kernel_size=kernel_size, stride=stride, padding=padding) self.deform_conv = ModulatedDeformConvPack( in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size,kernel_size), stride=stride, padding=padding, dilation=1, deform_groups=1) def forward(self,x): offset=self.offset_conv(x).clamp(-max_offset,max_offset) output=self.deform_conv(x,offset) return output ``` 上述代码展示了如何创建一个基于 PyTorch 的 `ModulatedDeformConvPack` 来构建具有 LKA 功能的新类 `DeformConvWithLKA`[^4]。 #### 4. 训练配置调整 当引入新的组件后,可能还需要相应地调整超参数设置,比如学习率、批量大小等,以确保最佳收敛性和泛化能力。 #### 5. 性能评估 经过这些改动之后,应该使用合适的指标(如 mAP)来衡量改进前后系统的差异,并通过对比实验验证所做更改的有效性[^1]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值