YOLOv5改进 | 注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程 + 代码解析)

本文详细介绍了MSDA(多尺度空洞注意力)模块,它通过多尺度特征提取和稀疏性利用提高模型效率和检测精度。在YOLOv5中添加MSDA模块,可以显著提升目标检测性能,尤其适用于小目标和大尺度目标。文章提供添加MSDA的步骤、yaml配置文件及训练过程截图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文介绍

本文给大家带来的改进机制是MSDA(多尺度空洞注意力)发表于今年的中科院一区(算是国内计算机领域的最高期刊了),其全称是"DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition"。MSDA的主要思想是通过线性投影得到特征图X的相应查询、键和值。然后,将特征图的通道分成n个不同的头部,并在不同的头部中以不同的扩张率执行多尺度SWDA来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.06左右)最后本文会手把手教你添加MSDA模块到网络结构中。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文介绍

二、MSDA框架原理

三、MSDA核心代码

四、手把手教你添加MSDA模块

4.1 MSDA添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

4.2 MSDA的yaml文件和训练截图

4.2.1 MSDA的yaml版本一(推荐)

多尺度空洞注意力(Multi-Scale Dilated Attention, MSDA)是一种用于计算机视觉深度学习中的注意力机制注意力机制是模仿人类视觉系统的一种方法,在处理输入数据时,将重点放在相关的区域上,忽略无关的信息,以提高模型的性能和效果。 MSDA通过引入多尺度空洞卷积的方式来提高注意力机制的效果。多尺度表示了不同尺度下的对象和特征,通过在不同尺度上对输入数据进行分析和建模,可以捕捉到更全面和具体的信息。而空洞卷积则可以扩大感受野,增加输入特征的感知范围,从而更好地理解和捕捉到全局和局部的关系。 MSDA的关键思想在于结合多尺度空洞卷积,通过不同的尺度和空洞率来构建不同层级和高级的特征表示。这样,在计算注意力时,模型可以更全面地考虑不同尺度和空间位置的信息,提高对输入数据的理解和建模能力。 MSDA可以在图像分割、目标检测和图像生成等任务中发挥重要作用。在图像分割中,它可以帮助模型更好地捕捉对象的边界和纹理特征;在目标检测中,它可以帮助模型更好地定位和区分目标;在图像生成中,它可以帮助模型更好地生成细节丰富和逼真的图像。 总之,多尺度空洞注意力MSDA)通过引入多尺度空洞卷积,提高了注意力机制的效果,可以帮助计算机视觉任务更全面地理解、建模和处理输入数据,从而提高模型的性能和效果。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值