多尺度特征融合+注意力机制!精度、速度双飙升

多尺度特征融合技术近年来已成为研究领域的热点,尤其在提升模型性能方面。而注意力机制可以有效的学习并策略性的结合不同的特征,使得模型的效果显著提升

通过结合二者,我们可以显著增强模型对关键信息的捕捉能力,无论是在医学诊断还是环境监测等应用中,都能带来性能的飞跃。

比如在遥感图像目标检测方面,AMMFN网络通过注意力机制和多尺度特征融合,有效提高了小目标的检测准确率。此外,BACNN等方法在木材分类和建筑物提取任务中也取得了突破性进展。

HiFuse: Hierarchical multi-scale feature fusion network for medical image classification

方法:

本文提出了一种名为HiFuse的三分支层次化多尺度特征融合网络结构,用于医学图像分类。该方法结合了卷积神经网络和基于自注意力机制的Transformer的优势,通过多尺度层次结构来提高对各种医学图像的分类准确性。HiFuse设计了一个并行的局部和全局特征块框架,有效地捕获局部空间上下文特征和不同尺度的特征的全局语义信息表示。

在这里插入图片描述

Three‑dimensional visualization of thyroid ultrasound images based on multi‑scale features fusion and hierarchical attention

方法:

本文提出了一种改进的U-Net++模型,称为PA-Unet++,用于提高甲状腺及其周围组织的超声图像多目标分割精度。该模型通过引入金字塔池化模块和注意力门控机制,增强了网络对不同尺度结构的分割能力,并逐步突出目标组织同时抑制背景像素的影响。PPM通过在不同金字塔尺度上融合特征,扩大了网络的感受野,而AG机制则在每个解码层应用,以增强对感兴趣区域的关注。

在这里插入图片描述

Multi-Scale Feature Fusion Attention Network for Building Extraction in Remote Sensing Images

方法:

本文提出了一种多尺度特征融合注意力网络,用于遥感图像中的建筑物提取。该网络通过多尺度通道和空间注意力模块自适应地捕获关键特征并消除无关信息,从而提高建筑物提取的准确性。此外,文章还提出了分层残差连接模块,通过多层次特征融合增强不同尺度信息的表达,显著改善了对上下文的理解以及对细节边缘的捕捉能力。

在这里插入图片描述

BACNN: Multi‑scale feature fusion‑based bilinear attention convolutional neural network for wood NIR classifcation

方法:

本文提出了一种基于多尺度特征融合的双线性注意力卷积神经网络,用于木材近红外光谱分类。该网络结合了近红外光谱和深度学习技术,通过一维卷积神经网络对杨木、核桃木和巴尔沙木以及它们的改性木材进行分类。BACNN通过添加1×7卷积块来抑制噪声,使用双分支结构从不同尺度提取特征,同时在每个分支中加入SE模块以获得更高质量的特征,最后通过全连接层进行分类。

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 多尺度特征融合模块的分割实现方法 多尺度特征融合是一种广泛应用于计算机视觉领域的方法,特别是在图像分割任务中。以下是关于如何实现多尺度特征融合模块的具体方法: #### 1. **轻量级多尺度特征融合网络 (MSF-Net)** 论文提出的 MSF-Net 是一种专门设计用于皮肤病变分割的任务框架[^1]。它通过引入 S-Conv 块、多尺度扩张卷积模块(MDC)以及多尺度特征融合模块(MFF),实现了高效的特征提取和融合。 - **S-Conv 块**: 这一模块主要用于增强局部细节捕捉能力,适用于处理高分辨率输入数据中的细微变化。 - **多尺度扩张卷积模块 (MDC)**: MDC 利用了不同膨胀率的空间金字塔池化技术,能够捕获多种感受野下的上下文信息。 - **多尺度特征融合模块 (MFF)**: 将低层特征图中的细粒度信息与高层语义信息相结合,提升模型的整体表现。 具体实现可以参考如下伪代码: ```python import torch.nn as nn class MultiScaleFeatureFusion(nn.Module): def __init__(self, channels_list): super(MultiScaleFeatureFusion, self).__init__() self.conv_low = nn.Conv2d(channels_list[0], channels_list[-1], kernel_size=1) self.conv_high = nn.Conv2d(channels_list[-1], channels_list[-1], kernel_size=1) def forward(self, low_level_features, high_level_features): resized_low = nn.functional.interpolate(low_level_features, size=high_level_features.shape[2:], mode='bilinear') fused_feature = self.conv_low(resized_low) + self.conv_high(high_level_features) return fused_feature ``` --- #### 2. **YOLOv8 的 CCFM 模块** CCFM(Cross-Scale Feature Fusion Module)是 YOLOv8 中提出的一种轻量化跨尺度特征融合方案[^2]。其核心在于结合通道注意力机制和空间注意力机制,有效减少参数数量的同时提高特征表达能力。 - **通道注意力模块**: 学习各通道之间的权重分布,突出重要特征并抑制冗余信息。 - **空间注意力模块**: 对于不同的空间位置分配不同程度的关注力,进一步优化全局感知效果。 以下是其实现的一个简化版本: ```python class ChannelAttentionModule(nn.Module): def __init__(self, channel_num, reduction_ratio=16): super(ChannelAttentionModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel_num, channel_num // reduction_ratio), nn.ReLU(), nn.Linear(channel_num // reduction_ratio, channel_num), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class SpatialAttentionModule(nn.Module): def __init__(self): super(SpatialAttentionModule, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avg_out, max_out], dim=1) out = self.conv(out) return x * self.sigmoid(out) class CrossScaleFeatureFusionModule(nn.Module): def __init__(self, channel_num): super(CrossScaleFeatureFusionModule, self).__init__() self.channel_attention = ChannelAttentionModule(channel_num) self.spatial_attention = SpatialAttentionModule() def forward(self, features): attended_channel = self.channel_attention(features) final_output = self.spatial_attention(attended_channel) return final_output ``` --- #### 3. **基于矩阵乘法的多尺度特征融合** 另一种常见的多尺度特征融合方式依赖于矩阵运算来衡量像素间的关联程度,并将底层详尽的信息融入最终输出之中[^3]。这种方法通常会用在深层神经网络的最后一两层间,以改善特定目标边界区域的表现。 下面是一个简单的例子展示该过程的核心逻辑: ```python def matrix_based_fusion(feature_map_1, feature_map_2): correlation_matrix = torch.matmul(feature_map_1.permute(0, 2, 3, 1), feature_map_2.permute(0, 2, 3, 1)) normalized_corr = nn.functional.softmax(correlation_matrix, dim=-1) enhanced_feature = torch.einsum('ijkl,jklm->ijkm', normalized_corr, feature_map_2.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return enhanced_feature ``` 上述函数接受两个特征映射作为输入,计算它们之间的相似性得分矩阵,并据此调整第二个特征映射的内容结构。 --- #### 总结 无论是采用复杂的架构如 MSF-Net 或者更简洁的设计像 CCFM,亦或是基础版的矩阵操作形式,这些策略都旨在解决单一尺度下难以兼顾全局背景与局部纹理的问题。实际开发过程中可以根据硬件资源约束及应用场景需求灵活选用合适的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值