YOLOv8可视化热力图 | 支持自定义模型、置信度选择等功能(论文必备)

本文介绍了如何使用YOLOv8进行目标检测并生成可视化热力图,适用于论文展示。内容包括项目代码、参数解析及详细使用教程,支持自定义模型和置信度选择。此外,还推荐了一个YOLOv8改进专栏,提供前沿机制的复现和改进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的机制是的可视化热力图功能,热力图作为我们论文当中的必备一环,可以展示出我们呈现机制的有效性,本文的内容支持YOLOv8最新版本,同时支持视频讲解,本文的内容是根据检测头的输出内容,然后来绘图,产生6300张预测图片,从中选取出有效的热力图来绘图。

在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。  

欢迎大家订阅我的专栏一起学习YOLO!

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、项目完整代码 

 三、参数解析 

四、项目的使用教程

### 使用YOLOv8生成力图 为了使用YOLOv8生成力图,基本流程涉及几个关键步骤。首先是利用YOLOv8模型进行对象检测并获取预测结果;其次,这些预测结果被转换成适合展示的形式—即力图格式;再者,将此力图与原始图片相融合以直观呈现检测效果;最后一步则是渲染最终合成后的图像以便查看[^1]。 对于具体的实现方式,在处理视频流或连续帧数据时,可以采用累积的方式记录特定区域内目标出现频率,进而形成密度力图[^2]。这不仅限于静态图像上的单次推理,也适用于动态场景中的实时监测。 下面给出一段Python代码示例用于说明如何基于YOLOv8和OpenCV创建简单的运动力图: ```python import cv2 from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练好的YOLOv8 nano模型 cap = cv2.VideoCapture(0) heat_map = None while True: ret, frame = cap.read() results = model(frame)[0].boxes.data.cpu().numpy()[:, :4] if heat_map is None: heat_map = np.zeros_like(frame[:,:,0], dtype=float) for box in results: x_min, y_min, x_max, y_max = map(int, box[:4]) heat_map[y_min:y_max,x_min:x_max] += 1 norm_heatmap = (heat_map / heat_map.max()) * 255 heatmap_img = cv2.applyColorMap(np.uint8(norm_heatmap), cv2.COLORMAP_JET) combined_image = cv2.addWeighted(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB), 0.7, heatmap_img, 0.3, 0) cv2.imshow('Heat Map', combined_image) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break cv2.destroyAllWindows() ``` 上述脚本展示了怎样读取摄像头输入,并通过YOLOv8执行目标识别任务的同时构建一个累加式的力图。每次迭代过程中更新区域内的度值,从而反映随着时间推移各个位置的目标活动情况。此外,还包含了色彩映射以及图像混合操作使得输出更加美观易懂[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值