YOLOv8改进 | 检测头篇 | 2024最新HyCTAS模型提出SAttention(自研轻量化检测头 -> 适用分割、Pose、目标检测)

本文介绍了将HyCTAS的SAttention自注意力机制应用于YOLOv8检测头的创新方法,适用于目标检测、分割和关键点检测。详细阐述了基本原理,并提供了逐步添加检测头的教程,包括修改核心代码和yaml配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是由全新SOTA分割模型(Real-Time Image Segmentation via Hybrid Convolutional-TransformerArchitecture Search)HyCTAS提出的一种SelfAttention注意力机制,论文中叫该机制应用于检测头当中(论文中的分割效果展现目前是最好的)。我将其和我们YOLOv8的检测头集成在一起形成一个自注意力的分割检测头,当然本文的检测头同样适用于Pose和目标检测,本文中均有添加方法,本文内容为我独家创新。

 欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

一、本文介绍

二、基本原理介绍

三、核心代码

四、手把手教你添加检测头

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

4.5 修改五

### YOLOv8 模型轻量化改进方法与实现方案 #### 使用 MobileNetV2 替换 Backbone 实现高效目标检测 为了使 YOLOv8 更加适用于资源受限的环境,一种有效的轻量化策略是采用更高效的骨干网络。具体来说,可以通过引入 MobileNetV2 来替代原有的 Darknet 或其他较重的特征提取器[^2]。 MobileNetV2 利用了倒残差结构 (Inverted Residuals) 和线性瓶颈 (Linear Bottlenecks),这些设计使得它能够在减少参数数量的同时维持较高的表达能力。这种特性非常适合用于构建紧凑而强大的卷积神经网络架构,尤其适合移动设备和其他计算资源有限的情况。 ```python from ultralytics import YOLO import torch.nn as nn class LightWeightYOLO(nn.Module): def __init__(self, backbone='mobilenet_v2'): super(LightWeightYOLO, self).__init__() # 加载预训练好的 MobileNetV2 作为新backbone if backbone == 'mobilenet_v2': from torchvision.models import mobilenet_v2 self.backbone = mobilenet_v2(pretrained=True).features # 这里省略后续层定义... model = LightWeightYOLO() ``` #### 基于 SAttention轻量化检测头 HyCTAS 模型 除了优化主干网路外,还可以考虑改进头部的设计来进一步降低整体复杂度而不牺牲太多性能。HyCTAS 提出了利用自注意力机制(Self-Attention Mechanism),即所谓的 "SAttention" 轻量化检测头,这不仅增强了模型对于不同尺度物体的理解力,而且显著减少了所需的浮点运算次数[FN1]。 这种方法允许更好地捕捉全局上下文信息,并且由于其特殊的权重共享模式,即使在网络规模缩小的情况下也能保持良好的泛化效果。因此,当应用于 YOLOv8 中时,能够有效地改善检测精度并加快推理速度。 ```python def sattention_head(x): B, C, H, W = x.shape qkv = nn.Conv2d(C, 3*C, kernel_size=1)(x) q,k,v = torch.chunk(qkv, chunks=3, dim=1) attn = F.softmax(torch.matmul(F.normalize(k.flatten(2), p=2, dim=-1), F.normalize(q.flatten(2).transpose(-2,-1),p=2,dim=-1)),dim=-1) out = v * attn.unsqueeze(dim=1) return out.sum(dim=[2,3]) # 将上述函数集成到原有框架内即可完成改造 ```
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值