YOLOv9改进策略 | 添加注意力篇 | Deformable-LKA(DLKA)可变形的大核注意力(附多个位置添加教程)

本文详细介绍了YOLOv9中引入的Deformable-LKA(可变形大核注意力)机制,通过结合大卷积核和可变形卷积,提升了对复杂视觉信息的处理能力,特别是对小目标和不规则形状目标的检测。通过在YOLOv9中添加D-LKA,实验表明模型的mAP提高了约0.8。文中还手把手教读者如何添加D-LKA,提供了核心代码和训练配置文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进内容是Deformable-LKA(可变形大核注意力)。Deformable-LKA结合了大卷积核的广阔感受野和可变形卷积的灵活性,有效地处理复杂的视觉信息。这一机制通过动态调整卷积核的形状和大小来适应不同的图像特征,提高了模型对目标形状和尺寸的适应性。在YOLOv5中,Deformable-LKA可以被用于提升对小目标和不规则形状目标的检测能力特别是在复杂背景或不同光照条件下我进行了简单的实验,这一改进显著提高了模型mAP(提高了大概0.8左右)。

 

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

目录

一、本文介绍

二、Deformable-LKA机制原理

2.1 Deformable-LKA的基本原理

2.2 大卷积核

2.3 可变形卷积

2.4 2D和3D适应性

三、D-LKA的核心代码

四、手把手教你添加D-LKA

4.1 D-LKA添加步骤

4.1.1 修改一

4.1.2 修改二

4.1.3 修改三 

4.1.4 修改四

4.2 D-LKA的yaml文件和训练截图

4.2.1 D-LKA的yaml版本一(推荐)

4.2.2 D-LKA的yaml版本二

### 可变形交叉注意力机制概述 可变形交叉注意力机制是一种结合了可变形卷积和交叉注意力的思想,旨在提高模型对不同尺度特征的捕捉能力以及降低计算复杂度的方法。它通常被应用于计算机视觉中的目标检测、语义分割等领域,同时也可能扩展到自然语言处理领域。 #### 基本原理 可变形交叉注意力机制的心在于利用可变形卷积动态调整采样位置的能力,从而增强模型的空间自适应性[^1]。这种机制允许模型根据不同输入区域的重要性分配权重,并通过交叉注意力建立全局上下文关联。相比于传统的固定采样方式,这种方法能更有效地提取复杂的几何变换信息。 在具体实现方面,该方法首先定义一组偏移向量来控制采样的空间位置变化;其次,在这些位置上应用加权求和操作完成特征聚合过程。这一设计不仅保留了标准注意力机制的优点——即建模远程依赖关系的能力,还引入了一定程度上的灵活性以应对实际场景下的多样性需求。 以下是基于 PyTorch 的简单代码示例展示如何构建这样一个模块: ```python import torch from torch import nn class DeformableCrossAttention(nn.Module): def __init__(self, dim_in=256, num_heads=8, kernel_size=3): super(DeformableCrossAttention, self).__init__() self.num_heads = num_heads head_dim = dim_in // num_heads self.scale = head_dim ** -0.5 self.qkv_proj = nn.Linear(dim_in, 3 * dim_in) self.out_proj = nn.Linear(dim_in, dim_in) # Offset generation network for deformable convolution. self.offset_net = nn.Conv2d( in_channels=dim_in, out_channels=num_heads*kernel_size**2*2, # Two coordinates per point. kernel_size=kernel_size, padding="same" ) def forward(self, x, context=None): B, N, C = x.shape qkv = self.qkv_proj(x).reshape(B, N, 3, self.num_heads, C//self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) attn_weights = (q @ k.transpose(-2,-1)) * self.scale attn_probs = attn_weights.softmax(dim=-1) offset = self.offset_net(context.permute(0, 2, 1)).view( B*self.num_heads, -1, *(context.size()[1:]) ) sampled_v = F.grid_sample(v.view(B*self.num_heads, -1, H, W), grid=offset) output = (attn_probs @ sampled_v.reshape(*sampled_v.shape[:2],-1)).transpose(1,2).contiguous().view(B,N,C) return self.out_proj(output) ``` 此段代码展示了如何创建一个简单的 `Deformable Cross Attention` 层。其中包含了查询键值投影(`qkv`)、偏置生成网络(offset generator),并通过调用Pytorch内置函数实现了心功能部分。 #### 关于论文与资源链接 目前关于此类特定组合的研究成果较少公开发布完整版PDF文档下载地址。不过可以从以下几经典工作中找到灵感: - [Dai et al., 2017](https://arxiv.org/abs/1703.06211): 提出了原始版本的可变形式卷积概念。 - [Huang et al., 2019](https://paperswithcode.com/paper/criss-cross-attention-for-scene-segmentation): 描述了Criss-Cross Attention结构及其应用场景。 如果希望深入研究或者寻找更多参考资料,则建议访问Papers With Code网站搜索关键词“deformable cross attention”,那里会提供最新进展及相关开源项目链接。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值