YOLOv9改进策略目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

该专栏全面介绍了YOLOv9的改进策略,包括卷积、主干、检测头、注意力机制和Neck的创新,如RepNCSPELAN4、DiverseBranchBlock等。作者分享了超过60篇教程,提供完整的项目文件和视频教程,帮助读者掌握YOLOv9的优化技巧,并解答相关问题。尽管YOLOv9当前不适合论文发表,但适合提前进行改进研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

👑 YOLOv9有效涨点专栏目录 👑


专栏视频介绍:包括专栏介绍、得到的项目文件、模型二次创新、权重文件的使用问题,点击即可跳转。


前言 

Hello,各位读者们好

  • 本专栏自开设两个月以来已经更新改进教程60余篇其中包含RepNCSPELAN4、主干、检测头、注意力机制、Neck多种结构上创新,也有损失函数和一些细节点上的创新。
  • 同时本人一些讲解视频和包含我所有创新的YOLOv9文档并不能在CSDN上传(所有的创新点都经过我的测试是可用的,得到该文件之后大家可以随意组合使用),所以会建立群的形式在内上传我的文件和视频我也会在群内不定期和大家交流回答大家问题,同时定期会更新一些文章的创新点(经过我融合测试后的,先到先得)。

专栏介绍 

  • 本专栏持续更新网络上的所有前沿文章,也包含过去的所有改进机制(大家有感兴趣的机制都可以私聊我我会给大家更新),过去的改进机制并不一定就比新的机制效果差。
  • 专栏会一直持续更新,周更新3-10篇创新机制,持续复习最新的文章内容,订阅了本专栏之后,寻找和创新的工作我来,解放大家的70%的时间,文章发到手软。

目前专栏改进机制:68种 | 最新更新时间2025/2/10 | 本周更新1篇


(购买专栏之后,所有文章内容均可观看,同时可入群享受完整版本文件,替换数据集地址即可运行,对于小白来说非常适用) 


下面是大家购买专栏进群内能够获得的文件部分文件截图(CSDN上提供完整文件的本专栏为独一份),这些代码我已经全部配置好并注册在模型内大家只需要运行yaml文件即可,同时我总结了接近150+份的yaml文件组合供大家使用(群内有我的录制的讲解视频,教大家如何去修改和融合模型),同时大家也可以自己进行组合,估计组合起来共有上千种,总有一种适合你的数据集,让大家成功写出论文。

拥有这个文件YOLOv9你就可以一网打尽,文件均已注册完毕,只许动手点击运行yaml文件即可,非常适合小白。


本专栏平均质量分96,充分说明本专栏的质量。


本专栏的改进内容适用于YOLOv9的分类、检测、分割。


 💡欢迎大家订阅我的专栏一起学习YOLO💡

专栏购买链接-> 点击即可跳转购买专栏~


项目环境如下(不是必须,给大家一个参考)

  • 解释器:Python:3.9.7
  • 框架:Pytorch:1.12.1
  • 系统:Windows11
  • IDEA:Pycharm 

👑YOLOv9有效涨点专栏目录(内容持续更新)👑


👑试读文章👑  


👑基础篇👑 


  👑Conv篇👑

 


 👑注意力篇👑 


   👑Neck篇👑  


 👑损失函数篇👑   


  👑SPPFELAN篇👑 


  👑特殊场景篇👑

低照度/暗光:YOLOv9改进策略 | 低照度图像增强网络SCINet改进暗光目标检测(全网独家首发)

低照度/暗光:YOLOv9改进策略 | 低照度增强网络PE-YOLO改进主干(改进暗光条件下的物体检测)

低照度/暗光:YOLOv9改进策略 | 轻量级的低照度图像增强网络IAT改进YOLOv9暗光检测(全网独家首发)

低照度/暗光:YOLOv9改进策略 | 低照度增强网络Retinexformer改进黑夜目标检测 (2023.11最新成果,全网独家首发)

低照度/暗光:YOLOv9改进策略 |  2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)

图像去噪: YOLOv9改进策略 | 一种基于注意力机制的图像去噪网络ADNet融合YOLOv9(全网独家首发)

图像去噪:YOLOv9改进策略 | 利用图像去雾网络UnfogNet辅助YOLOv9进行图像去雾检测(全网独家首发) 

图像去雾:YOLOv9改进策略 | MB-TaylorFormer改善YOLOv9高分辨率和图像去雾检测(ICCV,全网独家首发)

图像去雾:YOLOv9改进策略 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测(全网独家首发)


  👑细节创新篇👑   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值