YOLOv11改进 | 添加注意力机制篇 | 混合局部通道注意力MLCA二次创新C2PSA机制助力YOLOv11有效涨点

一、本文介绍

本文带来的改进机制是MLCA(Mixed local channel attention)翻译来就是混合局部通道注意力,它结合了局部和全局特征以及通道和空间特征的信息,根据文章的内容来看他是一个轻量化的注意力机制,能够在增加少量参数量的情况下从而大幅度的提高检测精度(论文中是如此描述的),根据我的实验内容来看,该注意力机制确实参数量非常少,效果也算不错,而且官方的代码中提供了二次创新的思想和视频讲解非常推荐大家观看(文章内含二次创新C2PSA机制)。

  专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

 一、本文介绍

二、MLCA的基本框架原理

三、MLCA的核心代码

四、手把手教你添加MLCA

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、MLCA的yaml文件和运行记录

5.1 C2PSAMLCA的yaml文件

5.2 MLCA的yaml文件 

5.3 训练代码 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值