一、本文介绍
本文带来的改进机制是MLCA(Mixed local channel attention)翻译来就是混合局部通道注意力,它结合了局部和全局特征以及通道和空间特征的信息,根据文章的内容来看他是一个轻量化的注意力机制,能够在增加少量参数量的情况下从而大幅度的提高检测精度(论文中是如此描述的),根据我的实验内容来看,该注意力机制确实参数量非常少,效果也算不错,而且官方的代码中提供了二次创新的思想和视频讲解非常推荐大家观看(文章内含二次创新C2PSA机制)。
目录
本文带来的改进机制是MLCA(Mixed local channel attention)翻译来就是混合局部通道注意力,它结合了局部和全局特征以及通道和空间特征的信息,根据文章的内容来看他是一个轻量化的注意力机制,能够在增加少量参数量的情况下从而大幅度的提高检测精度(论文中是如此描述的),根据我的实验内容来看,该注意力机制确实参数量非常少,效果也算不错,而且官方的代码中提供了二次创新的思想和视频讲解非常推荐大家观看(文章内含二次创新C2PSA机制)。
目录