DeepSeek繁忙时的最佳平替:阿里通义千问Qwen2.5-Max

🌟 Qwen2.5-Max访问地址是:点我访问

除了 DeepSeek,春节期间还有一个国产大模型有新的突破,那就是阿里通义千问的 Qwen2.5-Max。

而且就在前几天,Qwen2.5-Max
登上了国际权威机构的大模型「盲测」榜单🏆第七名,超越了DeepSeek-V3,同时还一举超越 Claude 3.5
Sonnet、Llama 3.1 405B 等模型,并成为非推理类中国大模型的冠军。

在这里插入图片描述
厉害的是,Qwen2.5-Max 在数学、编程等单项能力的测评中表现卓越,均斩获了🥇第一名的佳绩。


🌟Qwen2.5-Max实际效果如何?

在这里插入图片描述

🎯 案例一:生成国际象棋游戏

🎯 案例描述:展示 Qwen2.5-Max 在生成复杂逻辑场景中的表现。
💡 亮点:能够快速生成高质量的国际象棋游戏代码或规则说明。

在这里插入图片描述

🧩 案例二:看看编程算法能力如何?算法题-最小覆盖子串

🎯 案例描述:测试 Qwen2.5-Max 在解决经典算法问题上的能力。
💡 亮点:精准解析算法逻辑,提供高效且易读的代码实现。
在这里插入图片描述

🖥️ 案例三:根据要求生成HTML代码

🎯 案例描述:验证 Qwen2.5-Max 在前端开发领域的实际应用能力。
💡 亮点:快速生成符合需求的 HTML 代码,支持多种样式和交互功能。

在这里插入图片描述


📢 总结

Qwen2.5-Max 不仅在国际榜单上表现出色,还在实际应用场景中展现了强大的能力。无论是数学、编程还是逻辑推理,它都能轻松应对,堪称 DeepSeek 繁忙时的最佳平替


### 微调Qwen2.5-0.5B模型(GGUF格式) 对于希望深入探索并优化特定应用场景下的性能而言,微调预训练的语言模型是一个重要的环节。针对Qwen2.5-0.5B模型,在Windows环境下利用ModelScope台下载相应版本之后,可以按照如下方法来进行微调操作。 #### 准备工作 为了能够顺利地进行微调流程,首先需要确保已经成功安装了必要的依赖库以及配置好了开发环境。这通常涉及到Python环境的搭建、PyTorch或其他框架的支持包安装等前置条件[^1]。 #### 数据集准备 拥有高质量的数据集是实现有效微调的基础。应当收集与目标领域紧密关联的文字资料作为训练素材,并对其进行适当的前处理,比如分词、去除噪声数据等。这些准备工作有助于提高最终模型的表现力和适用范围。 #### 实施微调 当一切就绪后,可以通过定义自定义的任务来启动微调过程: ```bash ollama create fine_tuned_model_name -f Modelfile_path ``` 这里`fine_tuned_model_name`代表新创建的经过微调后的模型名;而`Modelfile_path`则是指向包含具体参数设置及结构描述的文件位置。此命令会基于现有的基础架构之上执行进一步的学习调整,使得模型更加贴合实际需求场景[^2]。 需要注意的是,由于涉及到了较为专业的技术和工具链使用,建议参考官方文档获取最权威的操作指南和支持信息。此外,考虑到计算资源消耗较大等因素,在实施过程中可能还需要额外注意硬件兼容性和效率优化等题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java亮小白1997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值