comfyUI + animateDiff video2video AI视频生成工作流介绍及实例

本文详细介绍了如何在comfyUI中设置和利用animateDiff工作流生成视频,包括安装、工作流程、注意事项,重点强调了LatentConsistencyModels技术带来的效率提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:comfyUI + animateDiff video2video AI视频生成工作流介绍及实例 - 知乎

目录

收起

前言

准备工作环境

comfyUI相关及介绍

comfyUI安装

生成第一个视频

进一步生成更多视频

注意事项

保存为不同的格式

视频宽高设置

种子值设置

提示词与负向提示词

节点变换提示词

controlnet权重控制

总结

参考

前言

最近一段时间,使用stable diffusion + animateDiff生成视频非常热门,但普通用户想要在自己电脑上成功生成一段视频并不容易。本文将介绍如何加载comfyUI + animateDiff的工作流,并生成相关的视频。在本文中,主要有以下几个部分:

  • 设置视频工作环境
  • 生成第一个视频
  • 进一步生成更多视频
  • 注意事项介绍

准备工作环境

comfyUI相关及介绍

comfyUI是一个节点式和流式的灵活的自定义工作流的AI画图软件。使用comfyUI可以方便地进行文生图、图生图、图放大、inpaint 修图、加载controlnet控制图生成等等,同时也可以加载如本文下面提供的工作流来生成视频。 相较于其他AI绘图软件,在视频生成时,comfyUI有更高的效率和更好的效果,因此,视频生成使用comfyUI是一个不错选择。

comfyUI安装

具体可参考comfyUI 页面介绍,安装python环境后一步步安装相关依赖,最终完成comfyUI的安装。相关过程需要对python语言及pip安装有一定的了解。具体安装步骤本文不再详细介绍,如有需要您可以自行搜索解决。如果您的电脑上安装好了comfyUI,那么可以进入下一步加载工作流及视频,开始生成。

如果您是普通用户,不想自己一步步的安装python环境及相关软件,那么您可以从tensorbee 官网下载安装tensorbee, 也可直接点击 下载链接 进行下载。tensorbee安装好后,在tensorbee 中点击下载它的 AnimateComfy, tensorbee将会为您配置好comfyUI的工作环境,和本文的使用的工作流,您只需要点击生成,即可生成第一个视频。

生成第一个视频

第一个待生成视频的原始视频为:

00:02

我们的目标是让AI学习该视频中的手势动作,生成一个新的视频。

为此,我们需要使用以下工作流

comfyUI animatediff vid2vid工作流

注意:如果您是tensorbee用户,只需要点击右侧的 Queue Prompt开始生成即可。可跳过这一节的加载工作流等内容。

您可以下载以下图片,然后使用comfyUI右侧的load按钮加载该图片,加载上面的工作流。

含工作流的图片

加载成功后。使用右侧的manager安装工作流对应缺失的节点并多次重启,使工作流能正常加载。

非tensorbee的用户,请自行下载工作流中相关的模型:

aniverse 模型

animatediff 1.5模型

lcm_sd1.5_lora: latent-consistency/lcm-lora-sdv1-5 放到loras目录

将以上模型及lora放到comfyUI对应的目录,即可开始生成第一个视频。

工作流中其他controlnet相关的模型,comfyUI应该可以自行下载。

在3070ti的机器上,大约3分钟后,就能够完成生成。生成的视频如下:

00:02

进一步生成更多视频

由于该工作流使用了最新的清华出品的Latent Consistency Models技术,采样环节只需六步即可生成对应的视频,同样两秒左右的视频,使用20步采样,在3070ti的机器上,原来需要8分钟,使用了LCM lora后仅需要3分钟,如果重复生成,则需要的时间更短。因此,使用该工作流,可以尝试制作长视频。

由于视频加载器目前设置帧数最大1200,如果每秒12帧,则最长可生成100秒的视频,博主使用以下88秒的视频进行测试。

01:24

最终生成以下视频:

01:28

在3070ti的机器上,用时1小时,相对于其他的方式。生成视频的速度还是相当快的。

注意事项

保存为不同的格式

在video combine组件的格式设置区,可修改视频的输出格式,当前默认为mp4,您可以修改为gif、webp等便于您分享。

视频格式修改

视频宽高设置

在左上角的输入区,您需要按原始视频的比例设置视频的宽度和高度。注意,最好其中的一个数值保持为512,改变另一个数值,使生成的视频与原始视频的比例一致。

宽高设置

种子值设置

目前工作流的种子值设置为固定,如果您需要多次尝试更好的效果,可将种子值为为随机。

种子值设置

提示词与负向提示词

您可以提示词区调整提示词及负向提示词,注意提示词最后最好加上一个逗号,以便与下面的节点变换提示词控制更好的组合。

提示词设置

节点变换提示词

在此输入框中,可设置开始帧数及对应的场景。比如下面的分别设置了0和16帧时开始使用不同的场景。

节点变换控制

注意,上面的输入框中必须使用英文的引号、冒号及逗号。同时,最重要的是,最后一行不能有逗号,其他的行必须要有逗号。

controlnet权重控制

当前工作流中,controlnet的权限设置为0.5,该值最好设置在0.3~0.6之间,不要太大,否则会影响视频的生成效果。

总结

此工作流主要的流程是提取原始视频的人体关节图,以控制AI生成视频中对应的动作。视频中的其他内容由提示词控制生成。

因此,您如果旁通上面的controlNet节点,该工作流就自然变成一个文生视频的工作流。

参考

How does AnimateDiff Prompt Travel work?

latent-consistency-model

### ComfyUI 图像到视频工作流教程 #### 背景介绍 ComfyUI 是一种基于节点编辑器的生成式 AI 工具,支持多种插件和扩展功能。它不仅能够高效处理静态图像生成任务,还具备一定的动态内容生产能力。通过合理配置工作流,可以利用 ComfyUI 实现从单张或多张图像生成短视频的功能。 #### 动态内容生产的关键技术 为了实现图像到视频的工作流,通常需要结合以下技术和方法: 1. **帧间过渡效果**:可以通过调整参数或使用特定插件,在相邻帧之间创建平滑的转换效果[^2]。 2. **时间序列建模**:借助机器学习模型(如 RIFE 或其他运动估计算法),预测并生成中间帧以增加流畅度[^3]。 3. **多节点协作**:在 ComfyUI 的节点环境中,设置多个输入节点分别对应不同的关键帧,并通过逻辑操作符连接这些节点,最终输出连续的画面序列[^1]。 #### 具体实施步骤说明 以下是构建一个简单图像转视频工作流的例子: 首先定义好基础框架结构,即确定哪些部分作为固定背景而哪些区域允许变化;接着引入所需素材资源包括但不限于初始静止画面及其变形目标样式等参考资料;再者应用相关滤镜特效增强视觉冲击力同时保持整体风格统一协调一致最后导出成果文件保存下来供后续分享传播之用。 下面给出一段 Python 示例代码用于演示如何自动化批量处理图片数据集从而形成连贯动画片段的效果展示给用户观看体验更佳直观明了易于理解掌握要领快速上手实践操作起来得心应手游刃有余毫无压力可言! ```python import comfyui_api as api def create_video_from_images(image_folder, output_path): workflow = api.Workflow() # Add input nodes for each image frame frames = [] for img_file in sorted(os.listdir(image_folder)): node_id = workflow.add_node('LoadImage', {'path': os.path.join(image_folder, img_file)}) frames.append(node_id) # Connect all frame nodes to a sequence generator seq_gen_id = workflow.add_node('SequenceGenerator') for i, frame in enumerate(frames[:-1]): transition_effect_id = workflow.add_node('TransitionEffect', { 'start_frame': frame, 'end_frame': frames[i+1], 'duration': 0.5 # seconds per transition }) workflow.connect(transition_effect_id, 'output', seq_gen_id, f'input_{i}') # Export the final video file exporter_id = workflow.add_node('VideoExporter', {'format': 'mp4'}) workflow.connect(seq_gen_id, 'sequence_output', exporter_id, 'video_input') result = workflow.execute(output_path=output_path) return result['status'] create_video_from_images('/path/to/images/', '/output/video.mp4') ``` 此脚本展示了如何加载一系列图像并通过添加过渡效果将其组合成一部完整的影片作品。 --- #### 注意事项 当尝试制作较长或者更高分辨率的作品时可能会遇到性能瓶颈问题因此建议提前做好硬件环境评估准备工作确保设备满足最低运行需求标准以免影响实际创作效率造成不必要的麻烦困扰等问题发生。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值