拉格朗日方程是一种基于变分原理推导出来的运动方程,其基础来自经典力学中的达朗贝尔原理和哈密顿原理。它为分析复杂系统的动力学提供了一种有效的方法,特别适用于多自由度系统如机器人、机械系统等。
下面是拉格朗日方程的推导过程:
1. 哈密顿原理
哈密顿原理(Hamilton’s Principle)指出:一个力学系统的真实运动轨迹是使系统的作用量(action)达到极值的路径。作用量 (S) 是拉格朗日函数 (L = T - V)(动能减去势能)对时间的积分:
S = ∫ t 1 t 2 L ( q , q ˙ , t ) d t S = \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt S=