拉格朗日方程推导

拉格朗日方程是一种基于变分原理推导出来的运动方程,其基础来自经典力学中的达朗贝尔原理和哈密顿原理。它为分析复杂系统的动力学提供了一种有效的方法,特别适用于多自由度系统如机器人、机械系统等。

下面是拉格朗日方程的推导过程:

1. 哈密顿原理

哈密顿原理(Hamilton’s Principle)指出:一个力学系统的真实运动轨迹是使系统的作用量(action)达到极值的路径。作用量 (S) 是拉格朗日函数 (L = T - V)(动能减去势能)对时间的积分:

S = ∫ t 1 t 2 L ( q , q ˙ , t ) d t S = \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt S=t1t2L(q,q˙,t)dt

其中:

  • (\mathbf{q} = [q_1, q_2, \dots, q_n]) 是系统的广义坐标,代表系统的自由度;
  • (\dot{\mathbf{q}} = \frac{d\mathbf{q}}{dt}) 是广义速度;
  • (L) 是拉格朗日函数,(L = T - V)。

2. 变分原理

哈密顿原理的核心思想是,系统从时间 (t_1) 到时间 (t_2) 的运动,使得作用量 (S) 达到极值(通常是最小值)。为了找到这一极值,我们对作用量进行变分,要求变分后的增量为零。

令广义坐标 (\mathbf{q}(t)) 发生一个小的变化 (\delta \mathbf{q}(t)),即:

[
\delta S = \delta \int_{t_1}^{t_2} L(\mathbf{q}, \dot{\mathbf{q}}, t) dt = 0
]

将变分 (\delta) 移入积分:

[
\int_{t_1}^{t_2} \left( \frac{\partial L}{\partial \mathbf{q}} \delta \mathbf{q} + \frac{\partial L}{\partial \dot{\mathbf{q}}} \delta \dot{\mathbf{q}} \right) dt = 0
]

其中,(\delta \dot{\mathbf{q}} = \frac{d (\delta \mathbf{q})}{dt})。将这一项代入上式:

[
\int_{t_1}^{t_2} \left( \frac{\partial L}{\partial \mathbf{q}} \delta \mathbf{q} + \frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{d (\delta \mathbf{q})}{dt} \right) dt = 0
]

3. 通过分部积分消去导数项

我们对第二项进行分部积分,处理 (\frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{d (\delta \mathbf{q})}{dt}):

[
\int_{t_1}^{t_2} \frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{d (\delta \mathbf{q})}{dt} dt = \left[ \frac{\partial L}{\partial \dot{\mathbf{q}}} \delta \mathbf{q} \right]{t_1}^{t_2} - \int{t_1}^{t_2} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) \delta \mathbf{q} dt
]

在边界条件下,(\delta \mathbf{q}(t_1) = \delta \mathbf{q}(t_2) = 0),因此积分的边界项为零:

[
\int_{t_1}^{t_2} \frac{\partial L}{\partial \dot{\mathbf{q}}} \frac{d (\delta \mathbf{q})}{dt} dt = - \int_{t_1}^{t_2} \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) \delta \mathbf{q} dt
]

将其代入原变分方程:

[
\int_{t_1}^{t_2} \left( \frac{\partial L}{\partial \mathbf{q}} - \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) \right) \delta \mathbf{q} dt = 0
]

4. 拉格朗日方程

由于 (\delta \mathbf{q}(t)) 是任意的微小变化,整个积分要为零,则括号内的项必须为零。这就得到了拉格朗日方程:

[
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial L}{\partial \mathbf{q}} = 0
]

这就是拉格朗日运动方程。它描述了系统在广义坐标 (\mathbf{q}) 下的动力学行为。

5. 加入广义力

如果系统受到外力作用(如控制力矩),我们可以在方程右边加入广义力 (\mathbf{\tau}),则拉格朗日方程变为:

[
\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{\mathbf{q}}} \right) - \frac{\partial L}{\partial \mathbf{q}} = \mathbf{\tau}
]

其中 (\mathbf{\tau}) 是作用在每个广义坐标方向上的力或力矩。

总结

拉格朗日方程通过哈密顿原理、变分法和分部积分等数学工具推导出来,为动力学系统的分析提供了一个统一的框架。它的优点是可以简化复杂系统的推导,特别适用于多自由度系统,不需要直接处理力的分解,能够处理保守力和非保守力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值