看完这10张动图,你会彻底理解 MCP 的架构原理!

—*1—*

10张动图深度剖析 MCP 架构原理

最近,模型上下文协议(MCP)特别火,你可能已经听说过了。

今天,我们来搞懂它到底是个啥。

简单来说,MCP 就像是给你的 AI 应用准备的一个 USB-C 接口

就像 USB-C 提供了一个标准化的方式来连接各种配件一样,MCP 标准化了你的 AI 应用如何连接到不同的数据源和工具

img

让我们稍微深入一点,从技术角度来剖析

MCP 的核心是客户端-服务器架构,一个主机应用可以连接到多个服务器。

它有三个关键部分:主机(Host)、客户端(Client)和服务器(Server)

在我们深入之前,先简单了解一下👇

img

主机代表任何 AI 应用(比如:Claude 桌面版,Cursor),它提供了 AI 交互的环境,访问工具和数据,并运行 MCP 客户端。

MCP 客户端在主机内部运行,以实现与 MCP 服务器的通信。

img

最后,MCP 服务器展示了特定的能力和提供数据访问,比如:

img

  • 工具:让大语言模型(LLMs)通过你的服务器执行操作。

  • 资源:将你的服务器上的数据和内容暴露给 LLMs。

  • 提示词:创建可重用的提示词模板和工作流程。

理解客户端-服务器通信对于构建你自己的 MCP 客户端-服务器至关重要。

所以,我们来理解一下客户端和服务器是如何通信的。

在我们一步步分解之前,先看一个示意图

img

首先,我们有功能交换,其中:

  • 客户端发送一个初始请求来了解服务器的功能。

  • 服务器然后响应它的功能细节。

  • 例如,一个天气 API 服务器,当被调用时,可以回复可用的“工具”,“提示词模板”,以及客户端可以使用的其他资源。

一旦这个交换完成,客户端确认成功连接,进一步的消息交换继续进行。

这是这种设置如此强大的原因之一:

传统的 API 设置中

  • 如果你的 API 最初需要两个参数(比如:天气服务的位置和日期),用户将他们的应用程序集成以发送带有这些确切参数的请求。

    img

  • 后来,如果你决定添加第三个必需参数(比如:温度单位,摄氏度或华氏度),API 的结构就改变了。

    img

  • 这意味着你 API 的所有用户都必须更新他们的代码以包含新参数。如果他们不更新,他们的请求可能会失败,返回错误,或提供不完整的结果。

    img

MCP 的设计解决了这个问题

  • MCP 引入了一种与传统 API 截然不同的动态和灵活的方法。

  • 例如,当一个客户端(比如:一个 AI 应用,如 Claude 桌面版)连接到一个 MCP 服务器(比如:你的天气服务)时,它发送一个初始请求来了解服务器的功能。

  • 服务器响应有关其可用工具、资源、提示词和参数的详细信息。比如:如果你的天气 API 最初支持位置和日期,服务器将这些作为其功能的一部分进行通信。

img

  • 如果你后来添加了一个单位参数,MCP 服务器可以在下一次交换期间动态更新其功能描述。客户端不需要硬编码或预定义参数——它只需查询服务器的当前功能并相应地调整。

img

  • 这样,客户端就可以即时调整其行为,使用更新的功能(比如,在请求中包括单位),而无需重写或重新部署代码。

到此,我希望你彻底理解 MCP 的作用

未来,我将探索创建自定义 MCP 服务器并围绕它们构建实践演示。敬请期待!

👉 轮到你了:你认为 MCP 比传统 API 设置更强大吗?

为了帮助同学们彻底掌握 MCP 开发 AI 应用以及 AI 应用架构设计的新范式**,我会开场直播和同学们深度剖析,请同学们点击以下****预约按钮免费预约**。

在这里插入图片描述

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

<think>好的,我现在要处理用户关于MCP协议如何调用大模型架构的问题。首先,我需要回顾一下MCP的基本概念和架构。根据用户提供的引用[^1],MCP(Model Context Protocol)是一种协议,旨在标准化大模型与外部系统之间的交互流程,提高协作效率。接下来,我需要理解用户的具体需求,他们想知道MCP在调用大模型架构时的具体方案。 首先,我应该从MCP的总体架构入手。引用中提到,MCP分为接口层、上下文管理层、协议适配层和模型接口层。接口层负责标准化的API,这可能涉及到RESTful或gRPC接口。上下文管理层处理对话历史、用户偏好等信息,这对于维持交互的连贯性很重要。协议适配层负责将不同模型接口统一,而模型接口层直接对接各大模型平台,如GPT或BERT。 然后,我需要考虑MCP调用大模型的具体步骤。可能包括请求封装、上下文管理、协议转换、模型调用和结果处理。每个步骤需要详细展开,例如在请求封装阶段,如何将用户输入转化为符合MCP的请求体,可能需要示例来说明结构。上下文管理部分要说明如何利用缓存机制或数据库来维护上下文,确保模型理解当前对话的状态。 协议适配层的作用是关键,因为它需要将MCP的请求转换成不同模型所需的格式。例如,调用GPT-4和PaLM可能需要不同的参数,适配层需要处理这些差异。模型接口层的调用方式可能涉及同步或异步请求,以及如何处理超时和重试机制。 另外,用户可能关心调用方案的示例,比如使用Python的伪代码来展示整个过程。这需要展示如何通过MCP的API发送请求,管理上下文,并处理响应。同时,还需要提到优化策略,如缓存、负载均衡和异步处理,这些能提升性能和可靠性。 最后,需要确保回答结构清晰,分点说明,并引用提供的资料。可能还需要验证每个步骤是否符合MCP的设计目标,比如标准化、降低耦合、提升可扩展性等。此外,用户的问题可能涉及技术细节,所以需要保持解释的易懂性,避免过于晦涩的术语,但又要准确反映MCP的工作原理。</think>### MCP协议调用大模型架构的方案 MCP(Model Context Protocol)通过标准化接口和上下文管理机制,实现对大模型架构的高效调用。以下是其核心调用方案的分步说明: --- #### 1. **接口层标准化** MCP通过**RESTful API**或**gRPC接口**定义统一的调用入口,例如: ```python # 示例:Python调用MCP接口 import requests payload = { "model": "gpt-4", "input": "用户输入文本", "context_id": "会话标识符" } response = requests.post("https://mcp-gateway/api/v1/invoke", json=payload) ``` 此层负责参数校验、身份认证和流量控制。 --- #### 2. **上下文管理** MCP通过**上下文标识符(context_id)** 维护对话状态: - 存储历史对话记录、用户偏好、领域知识 - 使用缓存(如Redis)或数据库实现跨请求的上下文关联 - 关键技术:通过键值对存储实现低延迟访问 --- #### 3. **协议适配层转换** 将标准化请求转换为目标模型所需的格式: | 目标模型 | 转换逻辑示例 | |---------|--------------| | GPT-4 | 添加`temperature=0.7`参数 | | BERT | 添加`[CLS]`标记 | | PaLM | 转换tensor格式 | 此层通过插件机制支持多模型扩展。 --- #### 4. **模型调用执行** 通过**模型接口层**对接具体实现: ```mermaid graph LR A[MCP协议] --> B{模型路由} B -->|NLP任务| C[GPT-4] B -->|图像生成| D[StableDiffusion] B -->|语音合成| E[WaveNet] ``` 支持同步/异步调用模式,超时时间可配置。 --- #### 5. **结果处理与返回** 对原始模型输出进行: 1. 标准化格式封装(JSON Schema校验) 2. 敏感信息过滤 3. 性能指标采集(延迟、token消耗) 返回示例: ```json { "output": "模型生成内容", "context_id": "更新后的会话标识", "metrics": {"latency": 450ms} } ``` --- ### 优化策略 1. **缓存复用**:对高频请求结果进行缓存(TTL可配置) 2. **负载均衡**:基于模型实例负载动态路由 3. **异步流水线**:分离请求接收、计算、返回三个阶段 4. **流量降级**:在过载时自动切换轻量模型 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值