Qwen3来袭,一手实测来了,系列里面最好用的竟然是它

Qwen3与2025.4.29凌晨发布,此次发布3一如既往的引起轰动,一方面来自于开源社区对LLama4的失望,另一方面来自于Qwen系列一直以来不是上来发布一个238B的看起来很牛逼但实际上并没有什么卵用的超大模型,而是一系列的小模型,尺寸从几千万参数到几百亿不等。可以说是非常实用且合理。

一、模型发布概览

以下是Qwen3系列模型的详细信息,包括模型尺寸、参数大小以及是否为MoE架构的表格:

模型名称

总参数规模

激活参数规模

是否MoE

上下文长度

备注

Qwen3-0.6B

0.6B

-

32K

超小型模型,适合端侧设备部署

Qwen3-1.7B

1.7B

-

32K

移动端优化,显存占用低

Qwen3-4B

4B

-

32K

性能匹敌Qwen2.5-72B-Instruct

Qwen3-8B

8B

-

128K

延续Qwen系列参数规模

Qwen3-14B

14B

-

128K

通用任务性能提升

Qwen3-32B

32B

-

128K

性能对标Qwen2.5-72B

Qwen3-30B-A3B

30B

3B

128K

MoE架构,激活参数为QwQ-32B的10%

Qwen3-235B-A22B

235B

22B

128K

旗舰MoE模型,性能超越DeepSeek-R1/Gemini-2.5-Pro等

其中几大亮点:

  1. 大尺寸MoE,超越了Deepseek R1,并且部署成本更低

图片

  1. 4B的模型代码能力超越GPT4o,是的你没看错

图片

  1. Qwen3-30B-A3B以3B激活的尺寸,超越了DeepseekV3(激活32B)

可以看出,这一次的黑马应该是Qwen3-4B,以及**Qwen3-30B-A3B,**以前我觉得MoE没啥用,很难打败同尺寸的Dense模型,但是把A缩小,这个推理的增益就显得有点恐怖了。你几乎可以以一个3B的速度,来达到一个72B Dense的效果。

反观LLama4, 400B激活17B,不能说是用处大,几乎可以说是没有一丁点卵用。

与此同时,RIP LLama4

图片

图片

二、Qwen3上手实测

简单测了几道题目,这道题目很少看到LLM能做对,但是,Qwen3 炸裂。

In a room I have only 3 sisters.

Anna is reading a book

Alice is playing a match of chess

What the third sister, Amanda is doing ?

图片

这个A3B能知道,Amanda在和Alice玩国际象棋。它能推理出来,象棋需要两个人玩!

Kevin currently has 8 apples. He ate 3 apples yesterday. How many apples does Kevin have now?

但是遗憾的是,它没有能回答这个问题。

图片

这个问题,Qwen3-32B能回答正确:

图片

太溜了。这个问题连Claude一开始都是跪下的。

尝试打开思考模式,MoE基本上都是跪下的,A22B也是跪下的,这么看来,还是Dense模型厉害,MoE仅仅只适合在推理增益非常大的情况下有用,例如这一次的30BA3B,就很让人心动,虽然大体上能力远不如32B。

Sally is a girl. She has 3 brothers. Each brother has 2 sisters. How many sisters does Sally have?

这道经典题目,在之前只有Gemini1.5能回答正确。现在30B-A3B也可以了。

图片

I do not not not like eggs. Do I like eggs?

超级经典问题:

图片

A3B只有在开启thinking模式下才能work。

Generate ten sentences ending in apple.

图片

图片

总结

由于时间关系,没有测试更多模型,但是我们可以很明显看到一个惊人的结论:

  • Qwen3-30B-A3B应该是目前部署性价比最高的模型,对于要求速度同时又要求精度的场景,如果你不考虑用多少显存,大概率可以直接上;

  • Qwen3-32B目前可能是同尺寸开源最强的模型,对于企业级应用应该是绰绰有余,几乎可以直接替代Deepseek-R1.

  • Qwen3-8B用来部署企业级应用,甚至在VL模型出来之后,可能成为多模态模型的标配,而Qwen3-4B-VL,可能达到现在32B-VL的水准。

最后感谢Qwen团队慷慨的开源,让我们可以直接获取到这些伟大的模型。同时这也进一步倒逼开源界产出更强大的模型,让AGI真正平权。

不知道如果DeepSeek继续开发小模型和新的强化模型,是否能和Qwen3一战?

大模型岗位需求

大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》*

1.学习路线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述

👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,**有需要的小伙伴,可以点击下方链接免费领取【保证100%免费

点击领取 《AI大模型&人工智能&入门进阶学习资源包》

**或扫描下方二维码领取 **

在这里插入图片描述

<think>好的,用户想了解Qwen3模型的类型和特性。首先,我需要确认Qwen3的具体信息,可能是指阿里巴巴的千问大模型第三代。接下来,要整理它的类型,比如是语言模型还是多模态模型,以及它的参数量级。然后是特点,可能包括性能提升、支持的长上下文、多语言能力、多模态支持等。需要确保信息准确,可能需要查阅官方资料或可靠来源。另外,用户要求生成相关问题,所以最后要准备几个相关问题,比如技术架构、应用场景等。还要注意格式要求,数学表达式用$...$,独立公式用$$...$$,中文回答,引用标识等。要确保回答结构清晰,分点说明,并符合用户的所有格式指令。</think>### Qwen3模型的类型与特性 #### 1. **模型类型** Qwen3(千问3)是由阿里巴巴研发的大规模**语言模型(LLM)**,属于**生成式预训练变换器(GPT)架构**的升级版本[^1]。其核心定位为: - **多模态模型**:支持文本、代码、数学推理、图像/音频处理等跨模态任务 - **多规模版本**:提供不同参数量的版本(如0.5B/1.8B/7B/14B/72B等),满足从移动端到云端的不同场景需求 #### 2. **核心特性** ① **性能突破** - 在MMLU、GSM8K等基准测试中,72B版本超越GPT-3.5和LLaMA2-70B[^2] - 数学推理能力提升显著,支持复杂公式推导如: $$ \int_{a}^{b} f&#39;(x)dx = f(b) - f(a) $$ ② **长上下文支持** - 标准版本支持32k tokens上下文窗口 - 扩展版本可处理超过百万tokens的连续文本 ③ **多语言能力** - 覆盖中/英/法/德/日等12种语言 - 中文理解准确率提升15%(相比前代) ④ **工具调用** - 内置代码解释器($x = \sum_{i=1}^n \frac{y_i}{z}$) - 支持API调用、文件处理等扩展功能 ⑤ **安全机制** - 采用RLHF(强化学习人类反馈)进行对齐训练 - 建立多层内容过滤系统,拒绝率提升30%[^3] #### 3. **技术架构** 基于改进的Transformer架构,主要创新点包括: - 动态稀疏注意力机制 - 混合精度训练优化 - 知识蒸馏技术应用 ```python # 示例:Qwen3的简化架构模块 class Qwen3Block(nn.Module): def __init__(self, dim, num_heads): super().__init__() self.attn = SparseAttention(dim, num_heads) self.mlp = GatedMLP(dim) def forward(self, x): x = x + self.attn(x) x = x + self.mlp(x) return x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值