运筹学基础(五):对偶问题及其性质

本文通过实例探讨了对偶问题在工厂生产决策中的应用,涉及如何通过利润最大化问题找出最优生产方案,以及如何通过设定影子价格确定资源的合理定价。文章还介绍了对偶问题的对称性、弱对偶性和互补松弛性等关键性质。
摘要由CSDN通过智能技术生成

喃喃

本意是要写一篇列生成的文章,但列生成的必要知识储备是单纯形法和对偶理论,隐约记得一些,但是又不太熟悉了… 没办法,先梳理了两篇关于单纯形法的文章,今天再梳理一下对偶问题,然后再进入列生成。

一个例子理解对偶问题

某工厂用4种资源生产3种产品,其价值系数和资源限量如下表所示:

在这里插入图片描述

问题一:工厂如何安排生产可以使得利润最大?

在这里插入图片描述

问题二:如果有一家公司想要购买该工厂的资源,那么怎么给资源定价才是合理/可接受的呢?

什么叫做可接受的价格呢?对于工厂而言,售卖资源带来的利润一定要不低于售卖产品带来的利润,才会愿意售卖资源而不是加工产品。因此,这是该决策的约束。

对于想买资源的公司来说,当然希望最小化购买的成本,因此,这是该决策的目标。

在这里插入图片描述
在这里插入图片描述

工厂愿意出售资源的价格,也称为影子价格,又称为对偶价格。它反映了资源最优使用效果的价值。

对偶问题怎么写

总结

在这里插入图片描述

实践

注意:例题1里面的原问题是 m a x max max,对偶问题是 m i n min min,例题2反过来了。
在这里插入图片描述

核心点:

  1. 对偶问题max约束的符号,与原问题变量的符号相反(=和无约束互反);
  2. 对偶问题max变量的符号,与原问题约束的符号相同

m a x z ′ = 5 y 1 + 4 y 2 + 6 y 3 y 1 + 2 y 2 ≥ 2 y 1 + y 3 ≤ 3 − 3 y 1 + 2 y 2 + y 3 ≤ − 5 y 1 − y 2 + y 3 = 1 y 1 ≥ 0 , y 2 ≤ 0 , y 3 无约束 max z' = 5y_1+4y_2+6y_3\\ y_1+2y_2 \geq 2\\ y_1+y_3 \leq 3\\ -3y_1+2y_2+y_3\leq-5\\ y_1-y_2+y3=1\\ y1\geq0,y2\leq0,y3无约束 maxz=5y1+4y2+6y3y1+2y22y1+y333y1+2y2+y35y1y2+y3=1y10,y20,y3无约束

对偶问题的性质

在这里插入图片描述

对称性

对偶问题的对偶是原问题。

弱对偶性

X ˉ \bar{X} Xˉ是原问题的可行解, Y ˉ \bar{Y} Yˉ是对偶问题的可行解,则 C X ˉ ≤ Y ˉ b C\bar{X}\leq\bar{Y}b CXˉYˉb

数学证明:

X ˉ \bar{X} Xˉ是原问题的可行解,则:
A X ˉ ≤ b Y ˉ A X ˉ ≤ Y ˉ b A\bar{X}\leq b\\ \bar{Y}A\bar{X}\leq \bar{Y}b AXˉbYˉAXˉYˉb

同理,若 Y ˉ \bar{Y} Yˉ是对偶问题的可行解,则:
Y ˉ A ≥ C Y ˉ A X ˉ ≥ C X ˉ \bar{Y}A\geq C\\ \bar{Y}A\bar{X}\geq C\bar{X} YˉACYˉAXˉCXˉ

因此:
Y ˉ b ≥ Y ˉ A X ˉ ≥ C X ˉ \bar{Y}b\geq\bar{Y}A\bar{X}\geq C\bar{X} YˉbYˉAXˉCXˉ

无界性

若原问题(对偶问题)为无界解,则对偶问题(原问题)无可行解。

直观理解:在最初的例子里,原问题为无界解,则意味着生产的产品可以为无限多个,那么在对偶问题中,不管公司定价为多少,都不可能让工厂接受。

扩展:
在这里插入图片描述

备注:判断问题是否有可行解,非常容易,只要找到一组满足条件的可行解即可。但是判断问题无可行解,相对困难。

应用例题:
在这里插入图片描述

最优性

X ^ \hat{X} X^是原问题的可行解, Y ^ \hat{Y} Y^是对偶问题的可行解,当 C X ˉ = Y ˉ b C\bar{X}=\bar{Y}b CXˉ=Yˉb时, X ^ \hat{X} X^ Y ^ \hat{Y} Y^是最优解。

对偶定理/强对偶性

若原问题有最优解,则对偶问题也有最优解,且目标函数值相等。

互补松弛性

X ^ \hat{X} X^是原问题的可行解, Y ^ \hat{Y} Y^是对偶问题的可行解, X s X_s Xs Y s Y_s Ys分别是松弛变量的可行解,则 X ^ \hat{X} X^ Y ^ \hat{Y} Y^时是最优解当且仅当 Y s X ^ = 0 Y_s\hat{X}=0 YsX^=0 Y ^ X s = 0 \hat{Y}X_s=0 Y^Xs=0

在这里插入图片描述

应用:给出对偶问题的最优解,求原问题的最优解。
在这里插入图片描述

参考文档

  1. 【运筹学】-对偶理论与灵敏度分析(一)(对偶理论)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值