喃喃
本意是要写一篇列生成的文章,但列生成的必要知识储备是单纯形法和对偶理论,隐约记得一些,但是又不太熟悉了… 没办法,先梳理了两篇关于单纯形法的文章,今天再梳理一下对偶问题,然后再进入列生成。
一个例子理解对偶问题
某工厂用4种资源生产3种产品,其价值系数和资源限量如下表所示:
问题一:工厂如何安排生产可以使得利润最大?
问题二:如果有一家公司想要购买该工厂的资源,那么怎么给资源定价才是合理/可接受的呢?
什么叫做可接受的价格呢?对于工厂而言,售卖资源带来的利润一定要不低于售卖产品带来的利润,才会愿意售卖资源而不是加工产品。因此,这是该决策的约束。
对于想买资源的公司来说,当然希望最小化购买的成本,因此,这是该决策的目标。
工厂愿意出售资源的价格,也称为影子价格,又称为对偶价格。它反映了资源最优使用效果的价值。
对偶问题怎么写
总结
实践
注意:例题1里面的原问题是
m
a
x
max
max,对偶问题是
m
i
n
min
min,例题2反过来了。
核心点:
- 对偶问题max约束的符号,与原问题变量的符号相反(=和无约束互反);
- 对偶问题max变量的符号,与原问题约束的符号相同。
m a x z ′ = 5 y 1 + 4 y 2 + 6 y 3 y 1 + 2 y 2 ≥ 2 y 1 + y 3 ≤ 3 − 3 y 1 + 2 y 2 + y 3 ≤ − 5 y 1 − y 2 + y 3 = 1 y 1 ≥ 0 , y 2 ≤ 0 , y 3 无约束 max z' = 5y_1+4y_2+6y_3\\ y_1+2y_2 \geq 2\\ y_1+y_3 \leq 3\\ -3y_1+2y_2+y_3\leq-5\\ y_1-y_2+y3=1\\ y1\geq0,y2\leq0,y3无约束 maxz′=5y1+4y2+6y3y1+2y2≥2y1+y3≤3−3y1+2y2+y3≤−5y1−y2+y3=1y1≥0,y2≤0,y3无约束
对偶问题的性质
对称性
对偶问题的对偶是原问题。
弱对偶性
若 X ˉ \bar{X} Xˉ是原问题的可行解, Y ˉ \bar{Y} Yˉ是对偶问题的可行解,则 C X ˉ ≤ Y ˉ b C\bar{X}\leq\bar{Y}b CXˉ≤Yˉb
数学证明:
若
X
ˉ
\bar{X}
Xˉ是原问题的可行解,则:
A
X
ˉ
≤
b
Y
ˉ
A
X
ˉ
≤
Y
ˉ
b
A\bar{X}\leq b\\ \bar{Y}A\bar{X}\leq \bar{Y}b
AXˉ≤bYˉAXˉ≤Yˉb
同理,若
Y
ˉ
\bar{Y}
Yˉ是对偶问题的可行解,则:
Y
ˉ
A
≥
C
Y
ˉ
A
X
ˉ
≥
C
X
ˉ
\bar{Y}A\geq C\\ \bar{Y}A\bar{X}\geq C\bar{X}
YˉA≥CYˉAXˉ≥CXˉ
因此:
Y
ˉ
b
≥
Y
ˉ
A
X
ˉ
≥
C
X
ˉ
\bar{Y}b\geq\bar{Y}A\bar{X}\geq C\bar{X}
Yˉb≥YˉAXˉ≥CXˉ
无界性
若原问题(对偶问题)为无界解,则对偶问题(原问题)无可行解。
直观理解:在最初的例子里,原问题为无界解,则意味着生产的产品可以为无限多个,那么在对偶问题中,不管公司定价为多少,都不可能让工厂接受。
扩展:
备注:判断问题是否有可行解,非常容易,只要找到一组满足条件的可行解即可。但是判断问题无可行解,相对困难。
应用例题:
最优性
若 X ^ \hat{X} X^是原问题的可行解, Y ^ \hat{Y} Y^是对偶问题的可行解,当 C X ˉ = Y ˉ b C\bar{X}=\bar{Y}b CXˉ=Yˉb时, X ^ \hat{X} X^、 Y ^ \hat{Y} Y^是最优解。
对偶定理/强对偶性
若原问题有最优解,则对偶问题也有最优解,且目标函数值相等。
互补松弛性
若 X ^ \hat{X} X^是原问题的可行解, Y ^ \hat{Y} Y^是对偶问题的可行解, X s X_s Xs、 Y s Y_s Ys分别是松弛变量的可行解,则 X ^ \hat{X} X^和 Y ^ \hat{Y} Y^时是最优解当且仅当 Y s X ^ = 0 Y_s\hat{X}=0 YsX^=0和 Y ^ X s = 0 \hat{Y}X_s=0 Y^Xs=0。
应用:给出对偶问题的最优解,求原问题的最优解。