优化基础(三):内部点、边界点、极值点、外部点

内部点

通俗理解:
给定一个集合 S S S,对于它的内部点 x x x而言,我们以 x x x为圆心、以 R R R为半径画个球,总是存在一个 R R R能够使得我们画的这个球里的所有点,都仍然属于 S S S

数学表达

如果 S S S是一个集合,点 x x x S S S的内部点,当且仅当存在一个 ϵ > 0 \epsilon > 0 ϵ>0,使得 x x x ϵ \epsilon ϵ-邻域 B ( x , ϵ ) B(x, \epsilon) B(x,ϵ)完全包含在 S S S中。

边界点

通俗理解:
一个点称为集合的边界点,如果它在集合内部不再存在一个开集(一个不包含边界的子集),而任何足够小的邻域(即这个点周围的任意小的区域)都包含集合内的点和集合外的点。

凸集的边界点有什么特点?

从边界点来看,凸集的边界点一定也可以找到超平面(supporting hyperplane)把它撑(分离开)到某一边去。非凸的在某些点找不到一个平面可以把它撑起来(分离)。
在这里插入图片描述

但是边界点不完全相同,又分为极值点和普通的边界点。如下图所示,A点是极值点,B点是普通的边界点。

观察可以发现,B点位于它旁边两个点的连线上,但A点不是。 更数学的表述方式是,极值点不能表示为集合中其他点的凸组合。(关于凸组合的理解可以参考我的文章优化基础(二):线性组合、仿射组合、锥组合、凸组合、线性集合、仿射集合、锥集合、凸集合的理解).
在这里插入图片描述

外部点

通俗理解:
x x x是集合 S S S的外部点,则 x x x S S S之间一定可以插入一个超平面,可以分开 x x x S S S有趣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值