Introduction to Monte Carlo Methods
创建 MP4 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2通道
级别:中级 |类型: 在线学习 |语言:英文 + 字幕 |持续时间: 31 讲座 ( 4h 45m ) |大小: 1.15 GB
统计计算、MCMC 和贝叶斯统计
您将学
到什么 将 MCMC 应用于统计建模
更深入地了解用于模拟
的统计方法 如何用 R 或 Python
编写代码 如何执行非参数引导
应用优化技术解决数值和组合问题
在本课程结束时,您将学习如何将蒙特卡洛方法应用于贝叶斯问题以进行数据分析
构建遗传算法
要求
你应该有一些 R 或 Python
的经验 本课程非常适合研究生学位课程(即数学、统计学、电气工程)
的学生 如果你没有扎实的统计学背景,你至少应该愿意学习
你应该对数理统计有基本的了解,并希望应用蒙特卡洛方法
描述
大家好,截至 2022 年 6 月,我必须通知您这门课程已过时。我忙于生活,无法回复任何消息或问题。内容是在我 2018 年申请研究生院时写的,所以有点粗糙,但这些材料将帮助任何人的 MS statistics/cs/economics 课程。不幸的是,由于 Udemy 的政策,我无法将定价更改为免费,但我希望这能为人们提供对蒙特卡洛方法和统计计算的一些基本了解。祝愿,Jonathan-------------------这是一门向公众开放的关于蒙特卡洛方法的完全开发的研究生课程。我将 Christian Robert 和 George Casella 等该领域领导者的大部分工作简化为易于理解的讲座和示例。目标受众是具有编程和统计背景,并对贝叶斯计算特别感兴趣的任何人。在本课程中,学生解决通过变换方法和马尔可夫链从目标分布中生成随机样本、优化数值和组合问题(即旅行推销员问题)和贝叶斯计算以进行数据分析的问题。在本课程中,学生有机会“手动”将 Monte Carlo 算法开发为代码,而无需使用“黑盒”第三方包。
本课程适合