Machine Learning for Insurance: Predict Claim & Assess Risk
2025 年 5 月出版
MP4 |视频: h264, 1280x720 |音频:AAC,44.1 KHz,2 Ch
语言:英语 |时长:3 小时 32 分钟 |大小: 1.48 GB
通过机器学习预测保险索赔金额,构建保险风险评估模型,并检测索赔欺诈
您将学
到的内容 了解保险中的机器学习应用及其技术限制
了解如何使用 XGBoost
预测保险索赔金额 了解如何使用逻辑回归构建保险风险评估模型
了解如何使用支持向量机
检测保险索赔欺诈 了解如何使用 LightGBM
预测保险索赔金额了解如何使用随机森林分类器构建保险风险评估模型
了解如何使用 K 最近邻检测保险索赔欺诈
了解如何使用合成数据
测试机器学习模型 了解如何使用合成少数过采样技术
处理类不平衡 了解如何使用随机森林回归器
进行特征重要性分析了解如何分析年龄、性别和保险索赔金额
之间的关系 了解如何找到体重指数和血压与保险索赔金额
之间的相关性 了解如何找到吸烟状况和保险索赔金额
之间的相关性 了解保险风险评估模型的工作原理。本节涵盖数据预处理、特征选择、训练测试拆分、模型训练和风险评估
了解如何通过删除缺失值和重复项来清理数据集
要求
不需要有机器学习方面的
经验 有 Python 和保险的基本知识
描述
欢迎来到保险机器学习:预测索赔和评估风险课程。这是一门基于项目的综合课程,您将学习如何使用 XGBoost、LightGBM、Random Forest、Logistics Regression、SVM 和 KNN 等模型构建保险风险评估模型、预测保险索赔金额以及检测保险索赔欺诈。本课程是机器学习和风险评估的完美结合,是提升数据科学技能同时提高保险业务技术知识的理想机会。在介绍环节中,您将了解机器学习在保险中的应用及其技术限制。然后,在下一节中,您将了解保险风险评估模型的工作原理。本节将涵盖数据收集、数据预处理、特征选择、将数据拆分为训练集和测试集、模型选择、模型训练、评估风险和模型评估。之后,您将从 Kaggle 下载保险数据集,这是一个提供来自各个行业的许多高质量数据集的平台。一切准备就绪后,我们将开始项目,首先我们将通过删除缺失值和重复项来清理数据集,一旦数据干净并准备好使用,我们将开始探索性数据分析,在第一部分中,我们将分析年龄、性别和保险索赔金额之间的关系,这将使我们能够识别索赔行为中的人口统计模式,并更好地了解不同的年龄组和性别认同影响保险索赔的可能性和规模。之后,我们将找到体重指数和血压与保险索赔金额之间的相关性,这将使我们能够量化健康指标与索赔金额的关系,从而为与健康相关的风险因素提供有价值的见解。之后,我们将调查吸烟状况与保险索赔金额之间的相关性,这将有助于我们评估吸烟等生活方式的选择如何导致更高的保险索赔金额和更高的风险状况。然后,我们将使用随机森林模型进行特征重要性分析,这将使我们能够识别和排序影响保险索赔金额的最有影响力的特征,从而实现更集中和高效的模型开发。接下来,我们将使用 XGBoost 和 LightGBM 回归器预测保险索赔金额,这将使我们能够利用机器学习的力量进行准确预测并捕获输入特征和索赔金额之间的复杂交互。之后,我们将使用 Logistic Regression 和 Random Forest 分类器构建一个保险风险评估模型,这将使我们能够根据风险水平对个人进行分类,使保险公司能够改进承保策略并做出明智的决策。然后,我们还将使用 Support Vector Machines 和 K Nearest Neighbors 检测保险索赔欺诈,这将使我们能够识别异常的索赔模式,标记可疑活动,并减少欺诈性索赔造成的经济损失。最后,在课程结束时,我们将使用 ChatGPT 生成的合成数据测试我们的机器学习模型,这将使我们能够通过将合成数据集格式化为 CSV 文件并上传m 添加到 Gradio 用户界面。在进入课程之前,我们需要问自己这个问题,为什么要将机器学习集成到保险中?嗯,这就是我的答案,机器学习使保险公司能够更快、更准确地做出决策,从而降低成本并提高运营效率。通过更有效地预测风险和检测潜在欺诈,保险企业可以提高盈利能力,并在快速发展的市场中保持竞争优势。以下是您可以从本课程中学到的内容:了解保险中的机器学习应用及其技术限制了解保险风险评估模型的工作原理。本节涵盖数据收集、数据预处理、特征选择、将数据拆分为训练集和测试集、模型选择、模型训练、评估风险和模型评估了解如何通过删除缺失值和重复项来清理数据集了解如何分析年龄、性别和保险索赔金额之间的关系了解如何查找体重指数和血压与保险索赔金额之间的相关性了解如何查找吸烟状况和保险索赔金额了解如何使用随机森林回归器进行特征重要性分析了解如何使用 XGBoost 预测保险索赔金额了解如何使用 LightGBML 预测保险索赔金额了解如何使用 Logistic Regression 构建保险风险评估模型了解如何使用随机森林分类器构建保险风险评估模型了解如何使用支持向量机检测保险索赔欺诈了解如何使用 K Nearest 检测保险索赔欺诈邻居了解如何使用合成数据测试机器学习模型了解如何使用合成少数过采样技术处理类不平衡
本课程
面向对构建保险风险评估模型和预测索赔金额
感兴趣的机器学习工程师 有兴趣将机器学习纳入其工作流程的保险分析师和精算师