【自动驾驶】运动规划丨速度规划丨 T 型 / S 型速度曲线

正常的速度曲线算法有 T 型速度曲线控制、S 型速度曲线控制、正弦加减速控制的算法,每一种算法都各有特点。

在这里插入图片描述

1.T 型速度曲线

T 型速度曲线整个运动过程分为匀加速、匀速、匀减速三个阶段,在变速过程中,加速度 a 始终为设定的一个定值,给定若干个控制点,设定加速度为 a,加速度为 - a,匀速阶段速度为 vm(即整个运动最大速度),以及总的运行时间 T,则速度、加速度、加加速度曲线如下图所示:

由图可知,T 型函数策略相对容易实现,但其加速度不连续,在加减速阶段与匀速阶段的衔接处,存在突变的情况,这会对车辆执行器造成冲击,影响驾乘舒适性。适用于紧急制动、矿区等对舒适性要求不高的场景。

在这里插入图片描述

2.S 型速度曲线

S 型速度曲线整个运动过程分为 7 个阶段,即加加速度阶段、匀加速阶段、减加速阶段、匀速段、加减速段、匀减速段、减减速段,不同阶段的速度衔接处加速度是连续的,且加速度的变化率可控,解决了 T 型速度曲线加速度存在的突变问题。S 速度曲线的速度、加速度和加加速度曲线如下所示:

由图可知,S 型速度曲线柔性较好,解决了 T 型函数存在的加速度突变的问题,避免了车辆运动时候的柔性冲击,但由于分段较多、结构复杂,导致算法计算量较大,实现起来相对复杂。

在这里插入图片描述

  1. 代码

"""
"""

import math
import numpy as np
import matplotlib.pyplot as plt


def T_speed(t, t1, t2, t3, v0, vm):
    a1 = (vm - v0) / t1
    a2 = -(vm - v0) / (t3 - t2)
    if (t >= 0 and t < t1):
        T_v = v0 + a1 * t
        T_a = a1
    elif (t >= t1 and t < t2):
        T_v = vm
        T_a = 0
    elif (t >= t2 and t < t3):
        T_v = a2 * (t - t3)
        T_a = a2
    else:
        T_v = 0
        T_a = 0

    return T_v, T_a


def S_speed(t, t1, t2, t3, a0, am):
    J1 = (am - a0) / t1
    J2 = -(am - a0) / (t3 - t2)
    if (t >= 0 and t < t1):
        S_a = a0 + J1 * t
        S_v = a0 * t + J1 * t ** 2 / 2

    elif (t >= t1 and t < t2):
        S_a = am
        S_v = am * t + (a0 - am) * t1 + J1 * t1 ** 2 / 2

    elif (t >= t2 and t < t3):
        S_a = J2 * (t - t3)
        S_v = J2 * t ** 2 / 2 - J2 * t3 * t + \
              (am * t2 + (a0 - am) * t1 + J1 * t1 ** 2 / 2 - J2 * t2 ** 2 / 2 + J2 * t3 * t2)
    else:
        S_a = 0
        t = t2
        vm = J2 * t ** 2 / 2 - J2 * t3 * t + (
                am * t2 + (a0 - am) * t1 + J1 * t1 ** 2 / 2 - J2 * t2 ** 2 / 2 + J2 * t3 * t2)
        S_v = vm
    return S_v, S_a


def main():


    for t in np.arange(0, 30, 1):
        plt.figure(1)
        [T_v,T_a] = T_speed(t, 10, 20, 30, 0, 10)

        ax1 = plt.subplot(2, 1, 1)
        ax2 = plt.subplot(2, 1, 2)
        plt.sca(ax1)
        plt.plot(t, T_v, 'or')  #
        plt.title(" speed" )
        plt.sca(ax2)
        plt.plot(t, T_a, 'og')  #
        plt.title(" acc")

        plt.figure(2)
        [S_v, S_a] = S_speed(t, 10, 20, 30, 0, 2)

        ax1 = plt.subplot(2, 1, 1)
        ax2 = plt.subplot(2, 1, 2)
        plt.sca(ax1)
        plt.plot(t, S_v, 'or')  #
        plt.title(" speed")
        plt.sca(ax2)
        plt.plot(t, S_a, 'og')  #
        plt.title(" acc")



    plt.axis("equal")
    plt.show()


if __name__ == '__main__':
    main()

T 型速度曲线 S 型速度曲线_魂淡林的博客 - CSDN 博客_s 型曲线一文教你快速搞懂速度曲线规划之 S 形曲线(超详细 + 图文 + 推导 + 附件代码)_GREYWALL-CSDN 博客_s 型速度曲线

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值