09.第五章 Galton-Watson分枝过程

第五章 Galton-Watson分枝过程

1.分枝过程模型

ξ \xi ξ是一个非负整型随机变量,分布是 P ( ξ = k ) = p k , k ≥ 0 , p 0 < 1 P(\xi=k)=p_k,k\ge 0,p_0<1 P(ξ=k)=pk,k0,p0<1。假设某物种繁衍的后代数服从 ξ \xi ξ的分布,且物种内每个个体的繁衍是独立的,第一代个体为 Z 1 Z_1 Z1,第二代为 Z 2 Z_2 Z2,自然地有
Z n + 1 = ∑ j = 1 Z n ξ n , j Z_{n+1}=\sum_{j=1}^{Z_n}\xi_{n,j} Zn+1=j=1Znξn,j
如此得到一列随机变量 Z 0 , Z 1 , ⋯ Z_0,Z_1,\cdots Z0,Z1,,它们取非负整数值, Z 0 = 1 Z_0=1 Z0=1 Z n Z_n Zn满足递推关系式,则这样的随机过程 Z = ( Z n , n ≥ 0 ) \boldsymbol Z=(Z_n,n\ge0) Z=(Zn,n0)是Markov链,状态空间为 Z + \Z^+ Z+,转移概率为
p i j = P ( ∑ k = 1 i ξ k = j ) , i , j ≥ 0 p_{ij}=P\left(\sum_{k=1}^i \xi_k=j\right),\quad i, j\ge0 pij=P(k=1iξk=j),i,j0
定义了分枝过程,可以求其数字特征。假设 ξ \xi ξ的分布为 P ( ξ = k ) = p k , E ξ = μ , D ξ = σ 2 P(\xi=k)=p_k,E\xi=\mu,D\xi=\sigma^2 P(ξ=k)=pk,Eξ=μ,Dξ=σ2,则有以下结论:

  1. E Z n = μ n EZ_n=\mu^n EZn=μn

    由定义 Z 1 = d ξ Z_1\stackrel d= \xi Z1=dξ,所以 E Z 1 = E ξ = μ EZ_1=E\xi =\mu EZ1=Eξ=μ

    n ≥ 1 n\ge 1 n1,由全期望公式有
    E Z n + 1 = E ( ∑ k = 1 Z n ξ n , j ) = ∑ N = 0 ∞ E ( ∑ k = 1 Z n ξ n , k ∣ Z n = N ) P ( Z n = N ) = ∑ N = 0 ∞ E ( ∑ k = 1 N ξ n , k ) P ( Z n = N ) = ∑ N = 0 ∞ μ N P ( Z n = N ) = μ E Z n \begin{aligned} EZ_{n+1}=&E\left(\sum_{k=1}^{Z_n} \xi_{n,j}\right)\\ =&\sum_{N=0}^\infty E\left(\sum_{k=1}^{Z_n}\xi_{n, k}\bigg|Z_n=N\right)P(Z_n=N)\\ =&\sum_{N=0}^\infty E\left( \sum_{k=1}^N \xi_{n,k} \right)P(Z_n=N)\\ =&\sum_{N=0}^\infty \mu NP(Z_n=N)\\ =&\mu EZ_n \end{aligned} EZn+1=====E(k=1Znξn,j)N=0E(k=1Znξn,kZn=N)P(Zn=N)N=0E(k=1Nξn,k)P(Zn=N)N=0μNP(Zn=N)μEZn
    由此递推关系式,可以得到 E Z n = μ n EZ_n=\mu^n EZn=μn

  2. D Z n = σ 2 μ n − 1 ( 1 + μ + ⋯ + μ n − 1 ) DZ_n=\sigma^2\mu^{n-1}(1+\mu+\cdots+\mu^{n-1}) DZn=σ2μn1(1+μ++μn1)

    由于 Z 1 = d ξ Z_1\stackrel d= \xi Z1=dξ,所以 D Z 1 = D ξ = σ 2 DZ_1=D\xi=\sigma^2 DZ1=Dξ=σ2

    n ≥ 1 n\ge 1 n1,由全期望公式有
    E ( Z n + 1 2 ) = E ( ∑ k = 1 Z n ξ k ) 2 = ∑ N = 0 ∞ E [ ( ∑ k = 1 Z n ξ k ) 2 ∣ Z n = N ] P ( Z n = N ) = ∑ N = 0 ∞ E [ ( ∑ k = 1 N ξ k ) 2 ] P ( Z n = N ) = ∑ N = 0 ∞ [ N E ξ 2 + N ( N − 1 ) ( E ξ ) 2 ] P ( Z n = N ) = ∑ N = 0 ∞ ( σ 2 + μ 2 ) N P ( Z n = N ) + ∑ N = 0 ∞ μ 2 N ( N − 1 ) P ( Z n = N ) = ( σ 2 + μ 2 ) E Z n + μ 2 E ( Z n 2 − Z n ) = σ 2 μ n + μ 2 E Z n 2 D ( Z n + 1 ) = E ( Z n + 1 2 ) − ( E Z n + 1 ) 2 = σ 2 μ n + μ 2 E ( Z n 2 ) − μ 2 μ 2 n = σ 2 μ n + μ 2 D Z n \begin{aligned} E(Z_{n+1}^2)=&E\left(\sum_{k=1}^{Z_n}\xi_{k}\right)^2\\ =&\sum_{N=0}^{\infty}E\left[\left(\sum_{k=1}^{Z_n}\xi_k\right)^2\bigg|Z_n=N\right]P(Z_n=N)\\ =&\sum_{N=0}^\infty E\left[\left(\sum_{k=1}^N\xi_k\right)^2\right]P(Z_n=N)\\ =&\sum_{N=0}^\infty [NE\xi^2+N(N-1)(E\xi)^2]P(Z_n=N)\\ =&\sum_{N=0}^\infty (\sigma^2+\mu^2)NP(Z_n=N)+\sum_{N=0}^\infty \mu^2N(N-1)P(Z_n=N)\\ =&(\sigma^2+\mu^2)EZ_n+\mu^2E(Z_n^2-Z_n)\\ =&\sigma^2\mu^n+\mu^2EZ_n^2\\ \quad\\ D(Z_{n+1})=&E(Z_{n+1}^2)-(EZ_{n+1})^2\\ =&\sigma^2\mu^n+\mu^2E(Z_n^2)-\mu^{2}\mu^{2n}\\ =&\sigma^2\mu^n+\mu^2DZ_n\\ \end{aligned} E(Zn+12)=======D(Zn+1)===E(k=1Znξk)2N=0E(k=1Znξk)2Zn=NP(Zn=N)N=0E(k=1Nξk)2P(Zn=N)N=0[NEξ2+N(N1)(Eξ)2]P(Zn=N)N=0(σ2+μ2)NP(Zn=N)+N=0μ2N(N1)P(Zn=N)(σ2+μ2)EZn+μ2E(Zn2Zn)σ2μn+μ2EZn2E(Zn+12)(EZn+1)2σ2μn+μ2E(Zn2)μ2μ2nσ2μn+μ2DZn
    归纳得到 D ( Z n ) = σ 2 μ n − 1 ( 1 + μ + ⋯ + μ n − 1 ) D(Z_n)=\sigma^2\mu^{n-1}(1+\mu+\cdots+\mu^{n-1}) D(Zn)=σ2μn1(1+μ++μn1)

虽然分枝过程的数字特征可以求出,但其具体分布却不易求得。

2.生成函数

对于非负整型随机变量 ξ \xi ξ,概率分布列为 P ( ξ = k ) = p k P(\xi=k)=p_k P(ξ=k)=pk,则定义其生成函数为
ϕ ξ ( s ) = E s ξ = ∑ k = 0 ∞ p k s k , 0 ≤ s ≤ 1 \phi_\xi (s)=Es^{\xi}=\sum_{k=0}^\infty p_ks^k,\quad 0\le s\le 1 ϕξ(s)=Esξ=k=0pksk,0s1
生成函数具有一些性质:

  1. ϕ ( 1 ) = 1 , 0 ≤ ϕ ( s ) ≤ 1 \phi(1)=1,0\le \phi(s)\le 1 ϕ(1)=1,0ϕ(s)1

  2. ϕ ( s ) \phi(s) ϕ(s) [ 0 , 1 ] [0,1] [0,1]上一致连续;

  3. 如果 E ξ k < ∞ E\xi^k<\infty Eξk<,那么 ϕ ( s ) \phi(s) ϕ(s) [ 0 , 1 ] [0,1] [0,1] k k k次可微,特别当 E ξ 2 < ∞ E\xi^2<\infty Eξ2< ϕ ′ ( 1 ) = E ξ , ϕ ′ ′ ( 1 ) = E ξ 2 − E ξ \phi'(1)=E\xi,\phi''(1)=E\xi^2-E\xi ϕ(1)=Eξ,ϕ(1)=Eξ2Eξ

  4. ϕ ( s ) \phi(s) ϕ(s) s = 0 s=0 s=0处无穷次可微,且
    p k = ϕ ( k ) ( 0 ) k ! , ∀ k ≥ 0 p_k=\frac{\phi^{(k)}(0)}{k!},\quad \forall k\ge0 pk=k!ϕ(k)(0),k0

  5. 如果 ξ , η \xi,\eta ξ,η独立,都是非负整型随机变量,那么 ξ + η \xi+\eta ξ+η的生成函数为 ϕ s + t ( s ) = ϕ s ( s ) ϕ η ( s ) \phi_{s+t}(s)=\phi_s(s)\phi_\eta(s) ϕs+t(s)=ϕs(s)ϕη(s)

现在求Galton-Watson分枝过程的生成函数,记 ξ \xi ξ的生成函数为 ϕ ( s ) \phi(s) ϕ(s) Z n Z_n Zn的生成函数为 ϕ n ( s ) \phi_n(s) ϕn(s),则由于 Z 1 = d ξ Z_1\stackrel d= \xi Z1=dξ,有 ϕ 1 ( s ) = ϕ ( s ) \phi_1(s)=\phi(s) ϕ1(s)=ϕ(s),并且
ϕ 2 ( s ) = E s Z 2 = E [ E ( s Z 2 ∣ Z 1 = N ) ] = ∑ N = 0 ∞ E ( s ∑ k = 1 N ξ k ∣ Z 1 = N ) P ( Z 1 = N ) = ∑ N = 0 ∞ ( E s ∑ k = 1 N ξ k ) P ( Z 1 = N ) = ∑ N = 0 ∞ [ ϕ ( s ) ] N P ( Z 1 = N ) = E ( ϕ ( s ) ) ξ = ϕ ( ϕ ( s ) ) \begin{aligned} \phi_2(s)=&Es^{Z_2}\\ =&E[E(s^{Z_2}|Z_1=N)]\\ =&\sum_{N=0}^\infty E(s^{\sum\limits_{k=1}^N \xi_k}|Z_1=N)P(Z_1=N)\\ =&\sum_{N=0}^\infty (Es^{\sum\limits_{k=1}^N\xi_k})P(Z_1=N)\\ =&\sum_{N=0}^\infty [\phi(s)]^N P(Z_1=N)\\ =&E(\phi(s))^\xi\\ =&\phi(\phi(s)) \end{aligned} ϕ2(s)=======EsZ2E[E(sZ2Z1=N)]N=0E(sk=1NξkZ1=N)P(Z1=N)N=0(Esk=1Nξk)P(Z1=N)N=0[ϕ(s)]NP(Z1=N)E(ϕ(s))ξϕ(ϕ(s))
以此类推,可以得到 ϕ n + 1 ( s ) = ϕ ( ϕ n ( s ) ) = ϕ n ( ϕ ( s ) ) \phi_{n+1}(s)=\phi(\phi_n(s))=\phi_n(\phi(s)) ϕn+1(s)=ϕ(ϕn(s))=ϕn(ϕ(s)),这就是分枝过程的生成函数。得到高阶分枝过程的生成函数后,比较 s k s^k sk的系数即可得到 p k p_k pk的值。

3.生存与灭绝概率

灭绝概率:记 α n = P ( Z n = 0 ) \alpha_n=P(Z_n=0) αn=P(Zn=0),这里 ( α n , n ≥ 1 ) (\alpha_n,n\ge 1) (αn,n1)为单调不减非负有界数列,存在极限即灭绝概率记作 τ \tau τ,即
τ = lim ⁡ n → ∞ α n , 0 ≤ τ ≤ 1. \tau=\lim_{n\to \infty }\alpha_n,\quad 0\le \tau \le 1. τ=nlimαn,0τ1.
μ = E ξ < 1 \mu=E\xi<1 μ=Eξ<1时,有 P ( Z n > 0 ) = P ( Z n ≥ 1 ) ≤ E Z n = μ n P(Z_n>0)=P(Z_n\ge 1)\le EZ_n=\mu^n P(Zn>0)=P(Zn1)EZn=μn,故 τ = 1 \tau=1 τ=1,也就是繁衍均值 < 1 <1 <1时物种以概率1灭绝。

假设 Z n Z_n Zn的生成函数为 ϕ n ( s ) \phi_n(s) ϕn(s),因为 ϕ n ( 0 ) = α n \phi_n(0)=\alpha_n ϕn(0)=αn,所以有 α n = ϕ n ( s ) = ϕ ( ϕ n − 1 ( s ) ) = α n − 1 \alpha_n=\phi_n(s)=\phi(\phi_{n-1}(s))=\alpha_{n-1} αn=ϕn(s)=ϕ(ϕn1(s))=αn1,令 n → ∞ n\to \infty n,有 τ = ϕ ( τ ) \tau=\phi(\tau) τ=ϕ(τ),因此灭绝概率一定满足方程
s = ϕ ( s ) s=\phi(s) s=ϕ(s)
如果这个方程只有一个解,那必定是 s = 1 s=1 s=1,也就是物种以概率1灭绝。如果 μ > 1 \mu>1 μ>1,则 τ \tau τ为方程的最小正解,且 0 < τ < 1 0<\tau<1 0<τ<1。因此有如下定理:

  • 对于 p 0 > 0 p_0>0 p0>0的分枝过程,设 E ξ = μ E\xi=\mu Eξ=μ,则:

    如果 μ ≤ 1 \mu\le 1 μ1,那么 τ = 1 \tau =1 τ=1

    如果 μ > 1 \mu>1 μ>1,那么 τ \tau τ是方程 ϕ ( s ) = s \phi(s)=s ϕ(s)=s的最小正解,且 0 < τ < 1 0<\tau<1 0<τ<1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值