第六章 非参数假设检验(2)
1.拟合优度检验
拟合优度,即利用总体 X X X中抽取的样本 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn,来检验 H 0 : r.v. X 的 分 布 为 F H_0:\text{r.v. }X的分布为F H0:r.v. X的分布为F这一假设。然而,对于总体分布,用符号、不符合这种说法未免过于绝对,因此通常是提出一个介于0到1之间的数值来衡量拟合的优劣程度,称作拟合优度。
拟合优度一般如此定义: p ( d 0 ) = P ( D ≥ d 0 ∣ H 0 ) p(d_0)=P(D\ge d_0|H_0) p(d0)=P(D≥d0∣H0),这里 D D D是一种样本之于给定分布的偏差,是一个统计量,有许多的定义方式; d 0 d_0 d0就是统计量 D D D对于给定样本的观测值。
当理论分布完全已知的时候,可以采用Pearson χ 2 \chi^2 χ2检验,它又分为几种类型。
-
随机变量 X X X为离散型,且只取有限个值 a 1 , ⋯ , a r a_1,\cdots,a_r a1,⋯,ar的情形。
设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn为从总体 X X X中抽取的简单样本,理论分布为
F : ( a 1 a 2 ⋯ a r p 1 p 2 ⋯ p r ) F:\left( \begin{array}{c} a_1&a_2&\cdots&a_r\\ p_1&p_2&\cdots&p_r \end{array} \right) F:(a1p1a2p2⋯⋯arpr)
且 p 1 , ⋯ , p r p_1,\cdots,p_r p1,⋯,pr已知, ∑ i = 1 r p i = 1 \sum_{i=1}^r p_i=1 ∑i=1rpi=1,检验的问题表示为
H 0 : P ( X = a i ) = p i , i = 1 , ⋯ , r H_0:P(X=a_i)=p_i,\quad i=1,\cdots,r H0:P(X=ai)=pi,i=1,⋯,r
设 X 1 , ⋯ , X n X_1,\cdots,X_n X1,⋯,Xn中,等于 a i a_i ai的个数为 ν i \nu_i νi(观察频数),按照分布 F F F的理想情况,每一个 a i a_i ai对应的理论频数应该是 n p i np_i npi,当 n n n充分大的时候观察频数应该趋近于理论频数,因此取检验统计量为 ∑ i = 1 r c i ( ν i / n − p i ) 2 \sum_{i=1}^rc_i(\nu_i/n-p_i)^2 ∑i=1rci(νi/n−pi)2,特别地,取 c i = n / p i c_i=n/p_i ci=n/pi,得到
K n = ∑ i = 1 r ( ν i − n p i ) 2 n p i ⟶ L χ r − 1 2 K_n=\sum_{i=1}^r \frac{(\nu_i-np_i)^2}{np_i}\stackrel{\mathscr L}{\longrightarrow }\chi^2_{r-1} Kn=i=1∑rnpi(νi−npi)2⟶Lχr−12
这样,当 K n K_n Kn过大,具体地说就是 K n > χ r − 1 2 ( α ) K_n>\chi^2_{r-1}(\alpha) Kn>χr−12(α)时拒绝 H 0 H_0 H0。按照前面的方式定义拟合优度,就是
p ( k 0 ) = P ( K n ≥ k 0 ∣ H 0 ) ≈ P ( χ r − 1 2 ≥ k 0 ) p(k_0)=\mathbf P(K_n\ge k_0|H_0)\approx\mathbf P(\chi^2_{r-1}\ge k_0) p(k0)=P(Kn≥k0∣H0)≈P(χr−12≥k0) -
理论分布为任一确定分布的情形。
此时,取 r − 1 r-1 r−1个常数 a 0 = − ∞ < a 1 < ⋯ < a r = ∞ a_0=-\infty<a_1<\cdots<a_r=\infty a0=−∞<a1<⋯<ar=∞,将数轴划分成 r r r个子区间 I i = [ a i − 1 , a i ) I_i=[a_{i-1},a_i) Ii=[ai−1,ai)(负无穷处为开区间),并计算样本落在 I i I_i Ii上的概率 p i = F ( a i ) − F ( a i − 1 ) p_i=F(a_i)-F(a_{i-1}) pi=F(ai)−F(ai−1),将其作为理论概率。这样,就转化成了理论分布为有限维离散分布的情形。
-
理论分布带有未知参数的情形。
这时的假设就变成 H 0 : r.v. X ∼ F ( x , θ 1 0 , ⋯ , θ s 0 ) H_0:\text{r.v. }X\sim F(x,\theta_1^0,\cdots,\theta_s^0) H0:r.v. X∼F(x,θ10,⋯,θs0),也就是存在这样一组参数让总体符合分布。
对上一情况直接推广,设 p j ( θ ) = P ( X ∈ I j ) = F ( a j ; θ ) − F ( a j − 1 ; θ ) p_j(\boldsymbol \theta)=\mathbf P(X\in I_j)=F(a_j;\boldsymbol \theta)-F(a_{j-1};\boldsymbol \theta) pj(θ)=P(X∈Ij)=F(aj;θ)−F(aj−1;θ),类似地可以求出
K n ( θ ) = ∑ j = 1 r ( ν i − n p i ( θ ) ) 2 n p i ( θ ) K_n(\boldsymbol \theta)=\sum_{j=1}^r \frac{(\nu_i-np_i(\boldsymbol \theta))^2}{np_i(\boldsymbol \theta)} Kn(θ)=j=1∑rnpi(θ)(νi−npi(θ))2
此时的 K n ( θ ) K_n(\boldsymbol \theta) Kn(θ)由于 θ \boldsymbol \theta θ的存在还不能作为统计量,所以要对 θ \boldsymbol \theta θ作出估计,用 θ ^ \hat {\boldsymbol \theta} θ^代入 K n ( θ ) K_n(\boldsymbol \theta) Kn(θ),其中 θ ^ \hat {\boldsymbol \theta} θ^也由样本 X \boldsymbol X X使用极大似然方法估计出,并且有
K n ( θ ^ ) ⟶ L χ r − 1 − s 2 K_n(\hat {\boldsymbol \theta})\stackrel{\mathscr L}{\longrightarrow }\chi^2_{r-1-s} Kn(θ^)⟶Lχr−1−s2
这样,当 K n ( θ ^ ) K_n(\hat {\boldsymbol \theta}) Kn(θ^)过大,即 K n ( θ ^ ) > χ r − 1 − s 2 ( α ) K_n(\hat {\boldsymbol \theta})>\chi^2_{r-1-s}(\alpha) Kn(θ^)>χr−1−s2(α),则否定原假设。拟合优度自然就是 p ( k 0 ∗ ) = P ( K n ( θ ^ ) ≥ k 0 ∗ ) ≈ P ( χ r − 1 − s 2 ≥ k 0 ∗ ) p(k_0^*)=\mathbf P(K_n(\hat{\boldsymbol \theta})\ge k_0^*)\approx\mathbf P(\chi^2_{r-1-s}\ge k_0^*) p(k0∗)=P(Kn(θ^)≥k0∗)≈P(χr−1−s2≥k0∗)。
2.列联表中的独立性检验
列联表主要是用于检验样本的两个属性之间是否独立的。假设总体中的每一个个体都可以按
A
,
B
A,B
A,B属性分类,属性
A
A
A有
r
r
r个水平,分别是
A
1
,
⋯
,
A
r
A_1,\cdots,A_r
A1,⋯,Ar;属性
B
B
B有
s
s
s个水平
B
1
,
⋯
,
B
s
B_1,\cdots,B_s
B1,⋯,Bs,这样,每个个体的观察结果为随机向量
X
=
(
X
(
1
)
,
X
(
2
)
)
X=(X^{(1)},X^{(2)})
X=(X(1),X(2)),第
X
i
X_i
Xi个个体的观察结果为
(
A
r
i
,
B
s
i
)
(A_{r_i},B_{s_i})
(Ari,Bsi)。一共有
n
n
n个个体,且属性为
(
A
i
,
B
j
)
(A_i,B_j)
(Ai,Bj)的个体有
n
i
j
n_{ij}
nij个,将数量列入表格,就做成
r
×
s
r\times s
r×s列联表。要验证的假设是
H
0
:
X
(
1
)
,
X
(
2
)
独
立
H_0:X^{(1)},X^{(2)}独立
H0:X(1),X(2)独立
现在将
A
A
A的水平记作
1
,
⋯
,
r
1,\cdots,r
1,⋯,r,
B
B
B的水平记作
1
,
⋯
,
s
1,\cdots,s
1,⋯,s。如果记
P
(
X
(
1
)
=
i
,
X
(
2
)
=
j
)
=
p
i
j
\mathbf P(X^{(1)}=i,X^{(2)}=j)=p_{ij}
P(X(1)=i,X(2)=j)=pij,如果
H
0
H_0
H0成立,则有
p
i
j
=
P
(
X
(
1
)
=
i
,
X
(
2
)
=
j
)
=
P
(
X
(
1
)
=
i
)
P
(
X
(
2
)
=
j
)
=
p
i
⋅
p
⋅
j
p
i
⋅
=
∑
j
=
1
s
p
i
j
,
p
⋅
j
=
∑
i
=
1
r
p
i
j
p_{ij}=\mathbf P(X^{(1)}=i,X^{(2)}=j)=\mathbf P(X^{(1)}=i)\mathbf P(X^{(2)}=j)=p_{i\cdot}p_{\cdot j}\\ p_{i\cdot}=\sum_{j=1}^sp_{ij},\quad p_{\cdot j}=\sum_{i=1}^r p_{ij}
pij=P(X(1)=i,X(2)=j)=P(X(1)=i)P(X(2)=j)=pi⋅p⋅jpi⋅=j=1∑spij,p⋅j=i=1∑rpij
所以原假设
H
0
H_0
H0转化为
H
0
:
p
i
j
=
p
i
⋅
p
⋅
j
,
∀
i
,
j
H_0:p_{ij}=p_{i\cdot}p_{\cdot j},\forall i,j
H0:pij=pi⋅p⋅j,∀i,j。此时如果将
p
i
⋅
,
p
⋅
j
p_{i\cdot},p_{\cdot j}
pi⋅,p⋅j视为参数,则独立的未知参数有
s
+
r
−
2
s+r-2
s+r−2个,此时计算得
χ
2
\chi^2
χ2统计量的值为
K
n
∗
=
n
(
∑
i
=
1
r
∑
j
=
1
s
n
i
j
2
n
i
⋅
n
⋅
j
−
1
)
K_n^*=n\left(\sum_{i=1}^r\sum_{j=1}^s\frac{n_{ij}^2}{n_{i\cdot}n_{\cdot j}}-1\right)
Kn∗=n(i=1∑rj=1∑sni⋅n⋅jnij2−1)
当
H
0
H_0
H0时且
n
→
∞
n\to \infty
n→∞时,有
K
n
∗
⟶
L
χ
(
r
−
1
)
(
s
−
1
)
2
K_n^*\stackrel{\mathscr L}{\longrightarrow }\chi^2_{(r-1)(s-1)}
Kn∗⟶Lχ(r−1)(s−1)2,如果两个属性独立则
K
n
∗
K_n^*
Kn∗不应该过大。如果
K
n
∗
>
χ
(
r
−
1
)
(
s
−
1
)
2
(
α
)
K_n^*>\chi^2_{(r-1)(s-1)}(\alpha)
Kn∗>χ(r−1)(s−1)2(α)则否定假设,否则接受。检验的拟合优度是
p
(
k
0
)
=
P
(
K
n
∗
≥
k
0
∣
H
0
)
≈
P
(
χ
(
r
−
1
)
(
s
−
1
)
2
≥
k
0
)
p(k_0)=\mathbf P(K_n^*\ge k_0|H_0)\approx\mathbf P(\chi^2_{(r-1)(s-1)}\ge k_0)
p(k0)=P(Kn∗≥k0∣H0)≈P(χ(r−1)(s−1)2≥k0)
特别地当
r
=
s
=
2
r=s=2
r=s=2时,
K
n
∗
=
n
(
n
11
n
22
−
n
12
n
21
)
2
n
1
⋅
n
2
⋅
n
⋅
1
n
⋅
2
⟶
L
χ
1
2
K_n^*=\frac{n(n_{11}n_{22}-n_{12}n_{21})^2}{n_{1\cdot}n_{2\cdot}n_{\cdot1}n_{\cdot 2}}\stackrel{\mathscr L}{\longrightarrow }\chi^2_1
Kn∗=n1⋅n2⋅n⋅1n⋅2n(n11n22−n12n21)2⟶Lχ12
3.列联表中的齐一性检验
设有
r
r
r个生产同一产品的工厂,生产
s
s
s个不同等级的产品,第
i
i
i个工厂的
j
j
j等品率为
p
i
(
j
)
p_i(j)
pi(j),现在从第
i
i
i个工厂取出
n
i
⋅
n_{i\cdot}
ni⋅个产品,记录
j
j
j等品
n
i
j
n_{ij}
nij个。齐一性检验检验的是
r
r
r个工厂产品质量相同,即
H
0
:
p
1
(
j
)
=
p
2
(
j
)
=
⋯
=
p
r
(
j
)
,
j
=
1
,
2
,
⋯
,
s
H_0:p_1(j)=p_2(j)=\cdots=p_r(j),j=1,2,\cdots,s
H0:p1(j)=p2(j)=⋯=pr(j),j=1,2,⋯,s
如果分布是完全已知的,即
p
1
(
j
)
=
⋯
p
r
(
j
)
=
p
j
0
p_1(j)=\cdots p_r(j)=p_j^0
p1(j)=⋯pr(j)=pj0,且
p
1
0
,
⋯
,
p
s
0
p_1^0,\cdots,p_s^0
p10,⋯,ps0均已知且和为1,此时
K
=
K
n
=
∑
i
=
1
r
∑
j
=
1
s
(
n
i
j
−
n
i
⋅
p
j
0
)
2
n
i
⋅
p
j
0
K=K_n=\sum_{i=1}^r\sum_{j=1}^s\frac{(n_{ij}-n_{i\cdot }p_j^0)^2}{n_{i\cdot }p_j^0}
K=Kn=i=1∑rj=1∑sni⋅pj0(nij−ni⋅pj0)2
当
H
0
H_0
H0成立时,有
K
n
⟶
L
χ
(
s
−
1
)
r
2
K_n\stackrel{\mathscr L}{\longrightarrow }\chi^2_{(s-1)r}
Kn⟶Lχ(s−1)r2。
如果分布未知,则
K
n
∗
=
n
(
∑
i
=
1
r
∑
j
=
1
s
n
i
j
2
n
i
⋅
n
⋅
j
−
1
)
⟶
L
χ
(
r
−
1
)
(
s
−
1
)
2
K_n^*=n\left( \sum_{i=1}^r\sum_{j=1}^s\frac{n_{ij}^2}{n_{i\cdot}n_{\cdot j}}-1 \right)\stackrel{\mathscr L}{\longrightarrow }\chi^2_{(r-1)(s-1)}
Kn∗=n(i=1∑rj=1∑sni⋅n⋅jnij2−1)⟶Lχ(r−1)(s−1)2
齐一性检验与独立性检验的区别,就在于
n
i
⋅
n_{i\cdot}
ni⋅是事先给定的,没有随机性;而独立性检验中
n
i
⋅
n_{i\cdot}
ni⋅是随机变量。但在独立性检验中成立的结论在齐一性检验中依然适用。
4.柯尔莫哥洛夫检验
对于拟合优度检验,Pearson χ 2 \chi^2 χ2检验虽然适用于任何总体分布,但当理论分布是连续分布时,柯尔莫哥洛夫检验效果更好。
要检验如下假设
H
0
:
F
(
x
)
=
F
0
(
x
)
H_0:F(x)=F_0(x)
H0:F(x)=F0(x),则从样本出发得到经验分布函数记作
F
n
(
x
)
F_n(x)
Fn(x),定义柯氏距离
D
n
=
sup
−
∞
<
x
<
+
∞
∣
F
n
(
x
)
−
F
0
(
x
)
∣
D_n=\sup_{-\infty<x<+\infty}|F_n(x)-F_0(x)|
Dn=−∞<x<+∞sup∣Fn(x)−F0(x)∣
为检验统计量,由格里汶科定理,当
H
0
H_0
H0成立时有
P
(
lim
n
→
∞
D
n
=
0
)
=
1
\mathbf P(\lim \limits_{n\to\infty}D_n=0)=1
P(n→∞limDn=0)=1,也就是说
D
n
D_n
Dn值过大时,倾向于否定假设
H
0
H_0
H0,拟合优度的计算公式是
p
(
D
0
)
=
P
(
D
≥
D
0
∣
H
0
)
p(D_0)=\mathbf P(D\ge D_0|H_0)
p(D0)=P(D≥D0∣H0)。需要确定一个常数,使得
p
(
D
n
,
α
)
=
α
p(D_{n,\alpha})=\alpha
p(Dn,α)=α,这个常数就是
D
n
D_n
Dn的临界值。当
n
n
n较小时,
D
n
,
α
D_{n,\alpha}
Dn,α的值可以由查表求出。
D
n
,
α
D_{n,\alpha}
Dn,α表格的制定依据是柯尔莫哥洛夫证明的极限定理:如果理论分布
F
0
(
x
)
F_0(x)
F0(x)在
R
\mathbf R
R上处处连续,则原假设成立时有
lim
n
→
∞
P
(
D
n
≤
λ
n
)
=
K
(
λ
)
=
{
∑
k
=
−
∞
∞
(
−
1
)
k
e
−
2
k
2
λ
2
,
λ
>
0
0
,
λ
≤
0
\lim_{n\to \infty}\mathbf P\left(D_n\le \frac{\lambda }{\sqrt n}\right)=K(\lambda)= \left\{ \begin{array}l \sum \limits_{k=-\infty}^\infty(-1)^ke^{-2k^2\lambda^2},&\lambda>0\\ 0,&\lambda \le 0 \end{array} \right.
n→∞limP(Dn≤nλ)=K(λ)=⎩⎨⎧k=−∞∑∞(−1)ke−2k2λ2,0,λ>0λ≤0