【时间序列分析】04.Hilbert空间

四、Hilbert空间

1.平稳序列的导出—— L 2 ( X ) L^2(X) L2(X)空间

在时间序列的预测中,常常会用历史信息对将来进行预测,最常见的预测就是线性预测,即
X n + k = a 1 X 1 + a 2 X 2 + ⋯ + a n X n X_{n+k}=a_1X_1+a_2X_2+\cdots+a_nX_n Xn+k=a1X1+a2X2++anXn
的形式。如果进行预测的项数是有限的,则这种求和是有意义的,但如果推广到无限,需要确保这样的求和是有意义的(即收敛),在这里,我们一般指均方收敛,至于为什么,在下面的论证过程中将体现。

为了研究这样的线性和,我们不妨对平稳序列 { X t } \{X_t\} {Xt}构造一个空间对线性和进行研究:
L 2 ( X ) = { ∑ j = 1 k a j X t j ∣ a j ∈ R , t j ∈ Z , 1 ≤ j ≤ k , k ∈ N + } L^2(X)=\left\{ \sum_{j=1}^k a_jX_{t_j}\bigg| a_j\in\R,t_j\in\Z,1\le j\le k,k\in\N_+ \right\} L2(X)={j=1kajXtjajR,tjZ,1jk,kN+}
也就是说 L 2 ( X ) L^2(X) L2(X)是关于平稳序列 { X t } \{X_t\} {Xt}有限维线性和构成的空间,并且它是一个线性空间,因为对任何 X , Y , Z ∈ L 2 ( X ) , a , b ∈ R X,Y,Z\in L^2(X),a,b\in\R X,Y,ZL2(X),a,bR,都有

  • 加法交换律与结合律: X + Y = Y + X ∈ L 2 ( X ) , ( X + Y ) + Z = X + ( Y + Z ) X+Y=Y+X\in L^2(X),(X+Y)+Z=X+(Y+Z) X+Y=Y+XL2(X),(X+Y)+Z=X+(Y+Z)
  • 零元素存在性: 0 ∈ L 2 ( X ) , X + 0 = X , X + ( − X ) = 0 0\in L^2(X),X+0=X,X+(-X)=0 0L2(X),X+0=X,X+(X)=0
  • 数乘分配律与结合律: a ( X + Y ) = a X + a Y , ( a + b ) X = a X + b X , a ( b X ) = ( a b ) X a(X+Y)=aX+aY,(a+b)X=aX+bX,a(bX)=(ab)X a(X+Y)=aX+aY,(a+b)X=aX+bX,a(bX)=(ab)X

如果引入内积,可以将 L 2 ( X ) L^2(X) L2(X)扩展成一个内积空间,这里内积定义为 ⟨ X , Y ⟩ = E ( X Y ) \langle X,Y\rangle={\rm E}(XY) X,Y=E(XY),追加满足

  • ⟨ X , Y ⟩ = ⟨ Y , X ⟩ , ⟨ a X + b Y , Z ⟩ = a ⟨ X , Z ⟩ + b ⟨ Y , Z ⟩ \langle X,Y\rangle=\langle Y,X\rangle,\langle aX+bY,Z\rangle=a\langle X,Z\rangle+b\langle Y,Z\rangle X,Y=Y,X,aX+bY,Z=aX,Z+bY,Z
  • ⟨ X , X ⟩ ≥ 0 \langle X,X\rangle\ge 0 X,X0,且 ⟨ X , X ⟩ = 0 \langle X,X\rangle =0 X,X=0当且仅当 X = 0 X=0 X=0以概率1成立;
  • 柯西不等式: ∣ ⟨ X , Y ⟩ ∣ ≤ [ ⟨ X , X ⟩ ⟨ Y , Y ⟩ ] 1 / 2 |\langle X,Y\rangle|\le [\langle X,X\rangle \langle Y,Y\rangle]^{1/2} X,Y[X,XY,Y]1/2

有了内积以后就可以定义距离为 ∣ ∣ X − Y ∣ ∣ = ( ⟨ X − Y , X − Y ⟩ ) 1 / 2 ||X-Y||=(\langle X-Y,X-Y\rangle)^{1/2} XY=(XY,XY)1/2,使其成为距离空间,追加满足

  • ∣ ∣ X − Y ∣ ∣ = ∣ ∣ Y − X ∣ ∣ ≥ 0 ||X-Y||=||Y-X||\ge 0 XY=YX0,且 ∣ ∣ X − Y ∣ ∣ = 0 ||X-Y||=0 XY=0当且仅当 X = Y X=Y X=Y以概率1成立;
  • 三角不等式: ∣ ∣ X − Y ∣ ∣ ≤ ∣ ∣ X − Z ∣ ∣ + ∣ ∣ Z − Y ∣ ∣ ||X-Y||\le ||X-Z||+||Z-Y|| XYXZ+ZY

这样一步步将 L 2 ( X ) L^2(X) L2(X)从线性空间扩充成内积空间、距离空间,说明平稳序列有限和具有诸多良好的性质,不过我们的目标是将有限和向无限和扩展,而无限中,最重要的就是收敛,为此我们需要定义一些关于随机变量收敛的概念。

2.二阶矩空间—— L 2 L^2 L2空间

平稳序列总是二阶矩有限的,因此我们可以把平稳序列纳入到一类更宽广的空间中,用 L 2 L^2 L2表示二阶矩有限的随机变量的全体 L 2 = { X : E X 2 < ∞ } L^2=\{X:{\rm E}X^2<\infty\} L2={X:EX2<},我们希望能够在 L 2 L^2 L2中找到关于收敛的定义。首先显然 L 2 L^2 L2也是内积空间和距离空间,并且 L 2 ( X ) L^2(X) L2(X) L 2 L^2 L2的子空间,因此在 L 2 ( X ) L^2(X) L2(X)中定义的概念在 L 2 L^2 L2中依然适用。

因为我们之前定义了距离,从直观上来看,一列随机变量收敛于一个随机变量,体现为它们的“距离”无限接近,因此我们可以直观地将收敛定义为: lim ⁡ n → ∞ ∣ ∣ ξ n − ξ 0 ∣ ∣ = 0 ⇔ ξ n ⟶ m . s . ξ 0 \lim\limits_{n\to \infty}||\xi_n-\xi_0||=0\Leftrightarrow \xi_n\stackrel{\rm m.s.}\longrightarrow \xi_0 nlimξnξ0=0ξnm.s.ξ0。因为这里 ∣ ∣ ξ n − ξ ∣ ∣ 2 = E ( ξ n − ξ ) 2 ||\xi_n-\xi||^2={\rm E}(\xi_n-\xi)^2 ξnξ2=E(ξnξ)2,所以这里的收敛指均方收敛

可以发现,这个收敛定义与实数列的收敛极其相似,因此考虑实数系的连续性与完备性,引入基本列的定义:如果 n , m → ∞ n,m\to \infty n,m ∣ ∣ ξ n − ξ m ∣ ∣ → 0 ||\xi_n-\xi_m||\to 0 ξnξm0,就称 { ξ n } \{\xi_n\} {ξn} L 2 L^2 L2中的基本列或Cauchy列。类比实数的Cauchy列,Cauchy列与收敛是等价的,而在 L 2 L^2 L2内,这个性质依然是成立的:

定理:如果 { ξ n } \{\xi_n\} {ξn} L 2 L^2 L2中的基本列,则存在唯一的 ξ ∈ L 2 \xi\in L^2 ξL2 a . s . {\rm a.s.} a.s.意义下),使得 ξ n ⟶ m . s . ξ \xi_n\stackrel {\rm m.s.}\longrightarrow \xi ξnm.s.ξ

由此定理,我们知道内积空间 L 2 L^2 L2中每一个基本列都有极限,而且极限也在这个内积空间中,我们就称内积空间 L 2 L^2 L2完备的。更一般地,我们将完备的内积空间(如 L 2 L^2 L2)称为Hilbert空间。

然而 L 2 ( X ) L^2(X) L2(X)并不一定能保证完备性,因此,我们取 L 2 L^2 L2中包含 L 2 ( X ) L^2(X) L2(X)最小闭子空间 L ˉ 2 ( X ) \bar L^2(X) Lˉ2(X),这样, L ˉ 2 ( X ) \bar L^2(X) Lˉ2(X)就是一个Hilbert空间,在 L ˉ 2 ( X ) \bar L^2(X) Lˉ2(X)中研究随机变量的收敛性更合适。

3.无穷滑动和系数条件放宽——平方可和

要证明这个结论,首先需要提出内积连续性定理:

内积的连续性定理:在内积空间中,如果 ∣ ∣ ξ n − ξ ∣ ∣ → 0 , ∣ ∣ η n − η ∣ ∣ → 0 ||\xi_n-\xi||\to0,||\eta_n-\eta||\to 0 ξnξ0,ηnη0,则有

  1. ∣ ∣ ξ n ∣ ∣ → ∣ ∣ ξ ∣ ∣ ||\xi_n||\to ||\xi|| ξnξ
  2. ⟨ ξ n , η n ⟩ → ⟨ ξ , η ⟩ \langle \xi_n,\eta_n\rangle\to \langle \xi,\eta\rangle ξn,ηnξ,η

证明:

对1,由三角不等式有
∣ ∣ ξ n ∣ ∣ ≤ ∣ ∣ ξ n − ξ ∣ ∣ + ∣ ∣ ξ ∣ ∣ , ∣ ∣ ξ ∣ ∣ ≤ ∣ ∣ ξ n − ξ ∣ ∣ + ∣ ∣ ξ n ∣ ∣ , ||\xi_n||\le ||\xi_n-\xi||+||\xi||,\quad ||\xi||\le ||\xi_n-\xi||+||\xi_n||, ξnξnξ+ξ,ξξnξ+ξn,
得到
∣ ∣ ξ ∣ ∣ ≤ lim ⁡ n → ∞ ∣ ∣ ξ n ∣ ∣ ≤ ∣ ∣ ξ ∣ ∣ , lim ⁡ n → ∞ ∣ ∣ ξ n ∣ ∣ = ∣ ∣ ξ ∣ ∣ . ||\xi||\le\lim_{n\to \infty}||\xi_n||\le ||\xi||,\quad \lim_{n\to \infty}||\xi_n||=||\xi||. ξnlimξnξ,nlimξn=ξ.
对2,由柯西不等式有
∣ ⟨ ξ n , η n ⟩ − ⟨ ξ , η ⟩ ∣ = ∣ ⟨ ξ n , η n − η ⟩ + ⟨ ξ n − ξ , η ⟩ ∣ ≤ ∣ ⟨ ξ n , η n − η ⟩ ∣ + ∣ ⟨ ξ n − ξ , η ⟩ ∣ ≤ ∣ ∣ ξ n ∣ ∣ ⋅ ∣ ∣ η n − η ∣ ∣ + ∣ ∣ ξ n − ξ ∣ ∣ ⋅ ∣ ∣ η ∣ ∣ → 0 , n → ∞ . \begin{aligned} |\langle\xi_n,\eta_n\rangle-\langle\xi,\eta\rangle|=&|\langle \xi_n,\eta_n-\eta\rangle+\langle \xi_n-\xi,\eta\rangle|\\ \le&|\langle\xi_n,\eta_n-\eta\rangle|+|\langle\xi_n-\xi,\eta\rangle|\\ \le&||\xi_n||\cdot||\eta_n-\eta||+||\xi_n-\xi||\cdot||\eta||\\ \to&0,\quad n\to \infty. \end{aligned} ξn,ηnξ,η=ξn,ηnη+ξnξ,ηξn,ηnη+ξnξ,ηξnηnη+ξnξη0,n.

这条定理说明,在内积空间中,只要两个向量距离足够近,则它们的长度也足够接近;只要两个向量有收敛的趋势,则它们的内积也有收敛的趋势。

现在可以证明对于平方可和的 { a j } \{a_j\} {aj}和零均值白噪声 { ε t } ∼ W N ( 0 , σ 2 ) \{\varepsilon_t\}\sim {\rm WN}(0,\sigma^2) {εt}WN(0,σ2),无穷滑动和 X t = ∑ j = − ∞ ∞ a j ε t − j X_t=\sum\limits_{j=-\infty}^\infty a_j\varepsilon_{t-j} Xt=j=ajεtj是存在的。令 ξ n = ∑ j = − n n a j ε t − j \xi_n=\sum\limits_{j=-n}^n a_j\varepsilon_{t-j} ξn=j=nnajεtj,只要证明 { ξ n } \{\xi_n\} {ξn}是基本列,就能说明 ξ n ⟶ m . s . X t \xi_n\stackrel{\rm m.s.}\longrightarrow X_t ξnm.s.Xt是存在的。不妨设 m < n m<n m<n,当 m → ∞ m\to \infty m时,
∣ ∣ ξ n − ξ m ∣ ∣ 2 = ∣ ∣ ∑ j = m + 1 n a j ε t − j + ∑ j = − n − m − 1 a j ε t − j ∣ ∣ 2 = E ( ∑ j = m + 1 n a j ε t − j + ∑ j = − n − m − 1 a j ε t − j ) 2 = σ 2 [ ∑ j = m + 1 n a j 2 + ∑ j = − n − m − 1 a j 2 ] → 0. \begin{aligned} &||\xi_n-\xi_m||^2\\ =&||\sum_{j=m+1}^na_j\varepsilon_{t-j}+\sum_{j=-n}^{-m-1}a_j\varepsilon_{t-j}||^2\\ =&{\rm E}\left(\sum_{j=m+1}^na_j\varepsilon_{t-j}+\sum_{j=-n}^{-m-1}a_j\varepsilon_{t-j} \right)^2\\ =&\sigma^2\left[\sum_{j=m+1}^na_j^2+\sum_{j=-n}^{-m-1}a_j^2 \right]\\ \to&0. \end{aligned} ===ξnξm2j=m+1najεtj+j=nm1ajεtj2E(j=m+1najεtj+j=nm1ajεtj)2σ2[j=m+1naj2+j=nm1aj2]0.
这就说明 { ξ n } \{\xi_n\} {ξn}是基本列,存在极限 ξ \xi ξ,定义 X t = ξ X_t=\xi Xt=ξ即有 ξ n ⟶ m . s . X t \xi_n\stackrel{\rm m.s.}\longrightarrow X_t ξnm.s.Xt,这就证明了 X t X_t Xt是有定义的。接下来利用内积的连续性求 X t X_t Xt的均值与自协方差函数。均值有
E X t = ⟨ X t , 1 ⟩ = lim ⁡ n → ∞ ⟨ ξ n , 1 ⟩ = lim ⁡ n → ∞ E ξ n = 0 , {\rm E}X_t=\langle X_t ,1\rangle=\lim\limits_{n\to \infty}\langle \xi_n,1\rangle =\lim\limits_{n\to \infty}{\rm E}\xi_n=0, EXt=Xt,1=nlimξn,1=nlimEξn=0,
自协方差函数有
γ k = E ( X t X t + k ) = lim ⁡ n → ∞ ⟨ ∑ j = − n n a j ε t − j , ∑ j = − n n a j ε t + k − j ⟩ = lim ⁡ n → ∞ E [ ∑ j = − n n a t ε t − j ∑ j = − n n a j ε t + k − j ] = σ 2 ∑ j = − ∞ ∞ a j a j + k . \begin{aligned} \gamma_k=&{\rm E}(X_tX_{t+k}) \\=&\lim_{n\to \infty}\left\langle\sum_{j=-n}^n a_j\varepsilon_{t-j},\sum_{j=-n}^na_j\varepsilon_{t+k-j} \right\rangle\\ =&\lim_{n\to \infty}{\rm E}\left[\sum_{j=-n}^na_t\varepsilon_{t-j}\sum_{j=-n}^na_j\varepsilon_{t+k-j} \right]\\ =&\sigma^2\sum_{j=-\infty}^\infty a_ja_{j+k}. \end{aligned} γk====E(XtXt+k)nlimj=nnajεtj,j=nnajεt+kjnlimE[j=nnatεtjj=nnajεt+kj]σ2j=ajaj+k.
这就将无穷滑动和的系数条件放宽到了平方可和

4.复值随机变量与时间序列

在进行下一步的学习之前,我们需要先对复值时间序列进行了解,先定义复随机变量为 Z = X + i Y Z=X+{\rm i}Y Z=X+iY,这里 X , Y X,Y X,Y都是实随机变量。如果 E X , E Y {\rm E}X,{\rm E}Y EX,EY都存在,则称 Z Z Z的数学期望存在,为 E Z = E X + i E Y {\rm E}Z={\rm E}X+{\rm iE}Y EZ=EX+iEY。定义二阶矩为 E ∣ Z ∣ 2 = E X 2 + E Y 2 {\rm E}|Z|^2={\rm E}X^2+{\rm E}Y^2 EZ2=EX2+EY2,如果 E ∣ Z ∣ 2 < ∞ {\rm E}|Z|^2<\infty EZ2<,就称 Z Z Z是二阶矩有限的复值随机变量。

H H H表示二阶矩有限的复值随机变量全体, Y ˉ \bar Y Yˉ表示 Y Y Y的共轭,定义内积为 ⟨ X , Y ⟩ = E ( X Y ˉ ) \langle X,Y\rangle={\rm E}(X\bar Y) X,Y=E(XYˉ),则 H H H是复数域上的Hilbert空间。

按照时间次序排列的复值随机变量 { Z n } \{Z_n\} {Zn}序列称为复值时间序列,并且如果满足
E Z n = μ ∈ C , C o v ( Z n , Z m ) = E [ ( Z n − μ ) ( Z m − μ ‾ ) ] = γ n − m , {\rm E}Z_n=\mu\in \mathbb C,\quad {\rm Cov}(Z_n,Z_m)={\rm E}[(Z_n-\mu)(\overline{Z_m-\mu})]=\gamma_{n-m}, EZn=μC,Cov(Zn,Zm)=E[(Znμ)(Zmμ)]=γnm,
{ Z n } \{Z_n\} {Zn}称为复值平稳序列, { γ k } \{\gamma_k\} {γk} { Z n } \{Z_n\} {Zn}的自协方差函数。

同理也可以定义复值零均值白噪声,只需要 μ = 0 , γ k = E ( Z n Z n + k ) = σ 2 δ n − m \mu=0,\gamma_k={\rm E}(Z_{n}Z_{n+k})=\sigma^2\delta_{n-m} μ=0,γk=E(ZnZn+k)=σ2δnm即可。

现在来验证一个重要复值序列: Y ∼ U ( − π , π ) , ε n = e i n Y Y\sim U(-\pi,\pi),\varepsilon_n=e^{{\rm i}nY} YU(π,π),εn=einY。求其均值,有
E ε n = ∫ − π π e i n y 1 2 π d y = 1 2 π ∫ − π π cos ⁡ ( n y ) + i sin ⁡ ( n y ) d y = δ n . {\rm E}\varepsilon_n=\int_{-\pi}^\pi e^{{\rm i}ny}\frac 1{2\pi}{\rm d}y=\frac{1}{2\pi}\int_{-\pi}^\pi\cos(ny)+{\rm i}\sin (ny){\rm d}y=\delta_n. Eεn=ππeiny2π1dy=2π1ππcos(ny)+isin(ny)dy=δn.
除了在 n = 0 n=0 n=0处,其他地方都是零均值的。再求其自协方差函数,
E ( ε n ε ˉ m ) = 1 2 π ∫ − π π e i ( n − m ) y d y = δ n − m . \begin{aligned} {\rm E}(\varepsilon_n\bar \varepsilon_m)=\frac 1{2\pi}\int_{-\pi}^\pi e^{{\rm i}(n-m)y}{\rm d}y=\delta_{n-m}. \end{aligned} E(εnεˉm)=2π1ππei(nm)ydy=δnm.
注意,克罗内克函数的这种表现形式在以后也会经常出现,即 2 π δ n = ∫ − π π e i n x d x 2\pi\delta_n=\int_{-\pi}^\pi e^{{\rm i}nx}{\rm d}x 2πδn=ππeinxdx

回顾总结

  1. Hilbert空间指的是完备的内积空间,在时间序列分析中,我们常常取二阶矩存在的实随机变量构成的空间 L 2 L^2 L2作为研究的对象,它就是一个Hilbert空间。
  2. L 2 L^2 L2是一个线性空间,为了将其往内积空间、距离空间扩展,定义两个向量的内积为 ⟨ X , Y ⟩ = E ( X Y ) \langle X,Y\rangle={\rm E}(XY) X,Y=E(XY),距离为 ∣ ∣ X − Y ∣ ∣ = ⟨ X − Y , X − Y ⟩ ||X-Y||=\sqrt{\langle X-Y,X-Y\rangle} XY=XY,XY ,因此,在 L 2 L^2 L2定义的收敛性指均方收敛。
  3. L 2 L^2 L2 ξ n → ξ \xi_n\to \xi ξnξ指的是 ∣ ∣ ξ n − ξ ∣ ∣ → 0 ||\xi_n-\xi||\to 0 ξnξ0,类比实数系定义有柯西收敛准则,即基本列必有极限,这里基本列指 n , m → ∞ n,m\to \infty n,m ∣ ∣ ξ n − ξ m ∣ ∣ → 0 ||\xi_n-\xi_m||\to 0 ξnξm0
  4. 在内积空间中有内积的连续性,即 ξ n → ξ , η n → η \xi_n\to \xi,\eta_n\to \eta ξnξ,ηnη时, ∣ ∣ ξ n ∣ ∣ → ∣ ∣ ξ ∣ ∣ , ⟨ ξ n , η n ⟩ → ⟨ ξ , η ⟩ ||\xi_n||\to ||\xi||,\langle\xi_n,\eta_n\rangle\to \langle\xi,\eta\rangle ξnξ,ξn,ηnξ,η。由此可以证明当 { a j } \{a_j\} {aj}平方可和时,无穷滑动和在均方收敛意义下有意义,完成了无穷滑动和的扩展。
  5. 对于一个具体的平稳过程 { X t } \{X_t\} {Xt},用 L 2 ( X ) L^2(X) L2(X)表示它的有限线性组合构成的空间,它是 L 2 L^2 L2的子集;用 L ˉ 2 ( X ) \bar L^2(X) Lˉ2(X)表示 L 2 L^2 L2中包括 L 2 ( X ) L^2(X) L2(X)的最小子空间,它是Hilbert空间。
  6. 复值随机变量 Z = X + i Y Z=X+{\rm i}Y Z=X+iY的期望是 E X + i E Y {\rm E}X+{\rm iE}Y EX+iEY,协方差是 E [ ( X − μ X ) ( Y − μ Y ‾ ) ] {\rm E}[(X-\mu_X)(\overline{Y-\mu_Y})] E[(XμX)(YμY)]。由复值随机变量构成的时间序列称为复值时间序列,类似地,有复值平稳序列与复值白噪声。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值