【时间序列分析】16. Wold表示定理

Wold 表示定理

Hilbert 空间中的投影

回忆随机变量的 Hilbert 空间的概念:用 L 2 L^2 L2 表示二阶矩有限的随机变量的全体: L 2 = { X : E X 2 < ∞ } L^2=\{X:EX^2<\infty\} L2={ X:EX2<} ,则 L 2 L^2 L2 也是线性空间、内积空间和距离空间。下面说明最佳线性预测实际上是 Hilbert 空间中的投影。

首先给出 Hilbert 空间中的投影的相关定义。

H H H L 2 L^2 L2 的闭子空间, Y ∈ L 2 Y\in L^2 YL2 ,可以证明 H H H 中存在唯一的 Y ^ \hat{Y} Y^ 使得
E ( Y − Y ^ ) 2 = inf ⁡ ξ ∈ H E ( Y − Y n ) 2 {\rm E}(Y-\hat{Y})^2=\inf_{\xi\in H}{\rm E}(Y-Y_n)^2 E(YY^)2=ξHinfE(YYn)2
Y ^ \hat{Y} Y^ Y Y Y H H H 上的投影,记作 P H ( Y ) P_H(Y) PH(Y) ,并且称 P H P_H PH 为投影算子。

Y ∈ L 2 Y\in L^2 YL2 ,如果对 H H H 中的任何 ξ \xi ξ E ( Y ξ ) = 0 {\rm E}(Y\xi)=0 E(Yξ)=0 ,则称 Y Y Y 垂直于 H H H

在这篇文章中我们不对投影的存在性和唯一性进行证明。接着我们引出投影的垂直性定理,同样我们也略去证明。事实上,引入 Hilbert 空间中的投影概念是为了后续 Wold 表示定理更容易理解,因此不拘泥于本章中定理的证明。

Y ∈ L 2 Y\in L^2 YL2 Y ^ ∈ H \hat{Y}\in H Y^H ,则 Y ^ = P H ( Y ) \hat{Y}=P_H(Y) Y^=PH(Y) 的充分必要条件是 ( Y − Y ^ ) (Y-\hat{Y}) (YY^) 垂直于 H H H

根据定理,我们可以将最佳线性预测和投影联系起来,即 L ( Y ∣ X ) = P H ( Y ) = Y ^ L(Y|\boldsymbol{X})=P_H(Y)=\hat{Y} L(YX)=PH(Y)=Y^ ,这里有 L ( Y ∣ X ) L(Y|\boldsymbol{X}) L(YX) Y Y Y X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 张成的空间 ( 记为 s p ( X ) {\rm sp}(\boldsymbol{X}) sp(X) ) 上的投影。从最佳线性预测的性质出发,可以得到以下关于最佳线性预测与投影算子的性质。

H ,   M H,\ M H, M L 2 L^2 L2 的闭子空间, X , Y ∈ L 2 X,Y\in L^2 X,YL2 a , b a,b a,b 为常数。

(1) L ( a X + b Y ∣ H ) = a L ( X ∣ H ) + b L ( Y ∣ H ) L(aX+bY|H)=aL(X|H)+bL(Y|H) L(aX+bYH)=aL(XH)+bL(YH)

(2) ∣ ∣ Y ∣ ∣ 2 = ∣ ∣ L ( Y ∣ H ) ∣ ∣ 2 = ∣ ∣ Y − L ( Y ∣ H ) ∣ ∣ 2 ||Y||^2=||L(Y|H)||^2=||Y-L(Y|H)||^2 Y2=L(YH)2=YL(YH)2

(3) ∣ ∣ L ( Y ∣ H ) ∣ ∣ ≤ ∣ ∣ Y ∣ ∣ ||L(Y|H)||\leq||Y|| L(YH)Y

(4) Y ∈ H Y\in H YH 的充分必要条件是 L ( Y ∣ H ) = Y L(Y|H)=Y L(YH)=Y

(5) Y ⊥ H Y\perp H YH 的充分必要条件是 L ( Y ∣ H ) = 0 L(Y|H)=0 L(YH)=0

(6) 如果 H ⊂ M H\subset M HM ,则 P H P M = P H P_HP_M=P_H PHPM=PH ,并且对 Y ∈ L 2 Y\in L^2 YL2
E [ Y − L ( Y ∣ M ) ] 2 ≤ E [ Y − L ( Y ∣ H ) ] 2   . {\rm E}\left[Y-L(Y|M)\right]^2\leq{\rm E}[Y-L(Y|H)]^2 \ . E[YL(YM)]2E[YL(YH)]2 .
H H H M M M 的子空间意味着 M M M H H H 包含更多的历史信息,用最佳线性预测的性质看,随着历史信息的增加,预测效果不会变得更差。

线性闭包

之前我们将 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 张成的空间记为 s p ( X ) {\rm sp}(\boldsymbol{X}) sp(X) ,但由于 X \boldsymbol{X} X 是有限维向量, s p ( X ) {\rm sp}(\boldsymbol{X}) sp(X) 是由 X \boldsymbol{X} X 中元素的有限线性组合构成的集合。在讨论预测问题时我们需要考虑充分多的历史信息,要将 X \boldsymbol{X} X 扩展到无穷维,而且 Hilbert 空间是完备的,就需要对 s p ( X ) {\rm sp}(\boldsymbol{X}) sp(X) 的极限情况加以讨论。于是引入线性闭包的概念。

A A A 为 Hilbert 空间 H H H 的子集,记 s p ( A ) {\rm sp}(A) sp(A) L A L_A LA A A A 的所有有限线性组合构成的集合,记 s p ‾ ( A ) \overline{\rm sp}(A) sp(A) L ˉ A \bar{L}_A LˉA s p ( A ) {\rm sp}(A) sp(A) 的元素及其元素极限构成的集合。记 H A H_A HA 为包含 A A A 的最小的闭子空间,事实上 H A = s p ‾ ( A ) H_A=\overline{\rm sp}(A) H

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值