【时间序列分析】06.自回归模型基础

六、自回归模型前置准备

1.推移算子

自回归模型是时间序列分析中一种基础模型,在引入这个模型之前,先引入一些便捷表达会让我们的讨论更加轻松。

首先是推移算子 B \mathscr B B,这是一个很好理解的概念,作用于某个时间序列中的随机变量上,相当于将其时间指标向前移动一位,即 B X t = X t − 1 \mathscr BX_t=X_{t-1} BXt=Xt1,自然有 B n X t = X t − n \mathscr B^nX_t=X_{t-n} BnXt=Xtn。推移算子 B \mathscr B B是作用于时间序列的时间指标 t t t的,如果一个随机变量不依赖于时间,那么推移算子对它不起作用,即 B Y = Y \mathscr BY=Y BY=Y

这个算子的便利性,在于它可以与多项式结合,表示时间序列的线性组合。以我们的线性平稳序列为例,我们定义了 X t = ∑ j = − ∞ ∞ a j ε t − j X_t=\sum\limits_{j=-\infty}^\infty a_j\varepsilon_{t-j} Xt=j=ajεtj,但每写一个 X t X_t Xt都要写一次求和号很麻烦,如果此时我们引入一个多项式 ψ ( z ) = ∑ j = − ∞ ∞ a j z j \psi(z)=\sum\limits_{j=-\infty}^\infty a_jz^j ψ(z)=j=ajzj,结合推移算子,就有 X t = ψ ( B ) ε t X_t=\psi(\mathscr B)\varepsilon_t Xt=ψ(B)εt,一下就变得简洁得多了。同时,推移算子的引入,也将这种滑动和与多项式建立了联系,以后我们可以通过对多项式的研究来讨论平稳序列的线性组合。

总的说来,令 ψ ( z ) = ∑ j = − ∞ ∞ b j z j \psi(z)=\sum\limits_{j=-\infty}^\infty b_jz^j ψ(z)=j=bjzj,只要级数 ∑ j = − ∞ ∞ b j X t − j \sum\limits_{j=-\infty}^\infty b_jX_{t-j} j=bjXtj在某种意义下收敛,就定义
ψ ( B ) = ∑ j = − ∞ ∞ b j B j , ψ ( B ) X t = ∑ j = − ∞ ∞ b j ( B j X t ) = ∑ j = − ∞ ∞ b j X t − j . \psi(\mathscr B)=\sum_{j=-\infty}^\infty b_j\mathscr B^j,\quad \psi(\mathscr B)X_t=\sum_{j=-\infty}^\infty b_j(\mathscr B^jX_t)=\sum_{j=-\infty}^\infty b_jX_{t-j}. ψ(B)=j=bjBj,ψ(B)Xt=j=bj(BjXt)=j=bjXtj.
其相关性质都比较简单,这里带过不说了。

2.常系数线性差分方程及其解

自回归模型的表现形式就是一种常系数线性差分方程,所以在引入自回归模型之前,不如先介绍这一种大类。常系数线性差分方程又可以分为齐次和非齐次的,表现形式常系数线性微分方程,因此我们也像讨论微分方程一样讨论差分方程。

常系数齐次线性方程就是在给定一组数 ( a 1 , ⋯   , a p ) (a_1,\cdots,a_p) (a1,,ap)的情况下的此方程:
X t − ( a 1 X t − 1 + a 2 X t − 2 + ⋯ + a p X t − p ) = 0 , t ∈ Z . X_t-(a_1X_{t-1}+a_2X_{t-2}+\cdots +a_pX_{t-p})=0,\quad t\in\Z. Xt(a1Xt1+a2Xt2++apXtp)=0,tZ.
这被称作 p p p阶齐次常系数线性差分方程,简称为齐次差分方程,满足此方程的时间序列(实值或复值)被称为齐次差分方程的解。结合刚才所说的推移算子,如果定义 A ( z ) = 1 − ∑ j = 1 p a j z p A(z)=1-\sum\limits_{j=1}^p a_jz^p A(z)=1j=1pajzp,那么 A ( B ) X t = 0 A(\mathscr B)X_t=0 A(B)Xt=0,也就是说差分方程由这个多项式 A ( z ) A(z) A(z)唯一决定,故称此多项式 A ( z ) A(z) A(z)为齐次差分方程的特征多项式

如果给定一组初值 ( X 0 , ⋯   , X p − 1 ) (X_0,\cdots,X_{p-1}) (X0,,Xp1),则根据递推公式,可以唯一确定任何一个 X t X_t Xt,不论 t t t是正整数还是负整数,那么根据初值的任意性,齐次差分方程的解有无限多个。并且,如果 { X t } , { Y t } \{X_t\},\{Y_t\} {Xt},{Yt}都是方程的解,那么它们的线性组合 Z t = ξ X t + η Y t Z_t=\xi X_t+\eta Y_t Zt=ξXt+ηYt也是方程的解,因此齐次差分方程的解空间是一个线性空间,一切都与常系数齐次线性方程的如此相似。

那么我们自然会猜想,齐次差分方程的解会不会与齐次微分方程有类似的形式呢?现在,我们给出常系数差分方程的解形式。

齐次差分方程解的定理:设多项式 A ( z ) = 1 − ∑ j = 1 p a j z j A(z)=1-\sum\limits_{j=1}^p a_jz^j A(z)=1j=1pajzj k k k个不同的零点 z 1 , ⋯   , z k z_1,\cdots,z_k z1,,zk,每个零点 z j z_j zj的重数是 r ( j ) r(j) r(j),也就是
A ( z ) = ∏ j = 1 k ( 1 − z z j ) r ( j ) , A(z)=\prod_{j=1}^k(1-\frac{z}{z_j})^{r(j)}, A(z)=j=1k(1zjz)r(j),
那么对任何 1 ≤ j ≤ k , 0 ≤ l ≤ r ( j ) − 1 1\le j\le k,0\le l\le r(j)-1 1jk,0lr(j)1,都有
A ( B ) t l z j − t = 0. A(\mathscr B)t^lz_j^{-t}=0. A(B)tlzjt=0.
也就是 t l z j − t t^lz_j^{-t} tlzjt是方程的解,进一步方程的通解为
X t = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 U l , j t l z j − t , t ∈ Z . X_t=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}U_{l,j}t^lz_j^{-t},\quad t\in\Z. Xt=j=1kl=0r(j)1Ul,jtlzjt,tZ.

举个例子,如果 A ( z ) = 1 6 ( 2 − z ) ( 3 − z ) = 1 − 5 6 z + 1 6 z 2 A(z)=\frac16(2-z)(3-z)=1-\frac56z+\frac16z^2 A(z)=61(2z)(3z)=165z+61z2,则它有两个一重根 z 1 = 2 , z 2 = 3 z_1=2,z_2=3 z1=2,z2=3,所以方程 A ( B ) X t = 0 A(\mathscr B)X_t=0 A(B)Xt=0有两个解,分别为 2 − t , 3 − t 2^{-t},3^{-t} 2t,3t。通过此定理,我们可以发现齐次差分方程解的固定部分都是非随机的,前面的随机变量系数 U l , j U_{l,j} Ul,j由初值 ( X 0 , ⋯   , X p − 1 ) (X_0,\cdots,X_{p-1}) (X0,,Xp1)唯一确定。

我们可以对 { t l z j − t } \{t^lz_j^{-t}\} {tlzjt}是方程的解作出证明,根据 A ( z ) A(z) A(z)的分解,我们只需要证明 ( 1 − z j − 1 B ) r ( j ) t l z j − t = 0 (1-z_j^{-1}\mathscr B)^{r(j)}t^lz_j^{-t}=0 (1zj1B)r(j)tlzjt=0成立即可。由于 l ≤ r ( j ) − 1 l\le r(j)-1 lr(j)1,所以我们可以把 ( 1 − z j − 1 B ) r ( j ) (1-z_j^{-1}\mathscr B)^{r(j)} (1zj1B)r(j)拆成 ( 1 − z j − 1 B ) [ l + 1 ] + [ r ( j ) − ( l + 1 ) ] (1-z_j^{-1}\mathscr B)^{[l+1]+[r(j)-(l+1)]} (1zj1B)[l+1]+[r(j)(l+1)]两部分,进一步,只需要证明 ( 1 − z j − 1 B ) l + 1 t l z j − t = 0 (1-z_j^{-1}\mathscr B)^{l+1}t^lz_j^{-t}=0 (1zj1B)l+1tlzjt=0即可。使用数学归纳法,对于 l = 0 l=0 l=0,显然有
( 1 − z j − 1 B ) z j − t = z j − t − z j − 1 z j − ( t − 1 ) = 0. (1-z_j^{-1}\mathscr B)z_j^{-t}=z_j^{-t}-z_j^{-1}z_j^{-(t-1)}=0. (1zj1B)zjt=zjtzj1zj(t1)=0.
进一步假设对于 0 ≤ l < m 0\le l<m 0l<m都有 ( 1 − z j − 1 B ) l + 1 t l z j − t (1-z_j^{-1}\mathscr B)^{l+1}t^lz_j^{-t} (1zj1B)l+1tlzjt,那么对于 l = m l=m l=m时,就有
( 1 − z j − 1 B ) m + 1 t m z j − t = ( 1 − z j − 1 B ) m [ t m z j − t − z j − 1 ( t − 1 ) m z j − ( t − 1 ) ] = ( 1 − z j − 1 B ) m [ b 1 t m − 1 + b 2 t m − 2 + ⋯ + b m − 1 t + b m ] z j − t = b 1 ( 1 − z j − 1 B ) m t m − 1 z j − t + ⋯ + b m − 1 ( 1 − z j − 1 B ) m t z j − t + b m ( 1 − z j − 1 B ) m z j − t = 0. \begin{aligned} &(1-z_j^{-1}\mathscr B)^{m+1}t^mz_j^{-t}\\ =&(1-z_j^{-1}\mathscr B)^m[t^mz_j^{-t}-z_j^{-1}(t-1)^{m}z_j^{-(t-1)}]\\ =&(1-z_j^{-1}\mathscr B)^m [b_1t^{m-1}+b_2t^{m-2}+\cdots +b_{m-1}t+b_m]z_j^{-t}\\ =&b_1(1-z_j^{-1}\mathscr B)^mt^{m-1}z_j^{-t}+\cdots+b_{m-1}(1-z_j^{-1}\mathscr B)^m tz_j^{-t}+b_m(1-z_j^{-1}\mathscr B)^mz_j^{-t}\\ =&0. \end{aligned} ====(1zj1B)m+1tmzjt(1zj1B)m[tmzjtzj1(t1)mzj(t1)](1zj1B)m[b1tm1+b2tm2++bm1t+bm]zjtb1(1zj1B)mtm1zjt++bm1(1zj1B)mtzjt+bm(1zj1B)mzjt0.
这里第一个等号是将 ( 1 − z j − 1 B ) m + 1 (1-z_j^{-1}\mathscr B)^{m+1} (1zj1B)m+1拆成 m m m次和 1 1 1次的,并将 1 1 1次的作用于 t m z j − t t^mz_j^{-t} tmzjt;第二个等号是将 z j − t z_j^{-t} zjt提出来,并对 t m − ( t − 1 ) m t^m-(t-1)^m tm(t1)m进行同类项合并;第三个等号将线性组合拆开;第四个等号中可以将每一项拆成含有归纳假设的部分,得到0的结果。这样,我们就证明了 { t l z j − t } \{t^lz_j^{-t}\} {tlzjt}是方程的解,并且有证明显示,方程的所有解都具有这样的形式,于是得到命题中显示的格式。

对于非齐次的情况,即方程从 A ( B ) X t = 0 A(\mathscr B)X_t=0 A(B)Xt=0变成了 A ( B ) X t = Y t A(\mathscr B)X_t=Y_t A(B)Xt=Yt,这里 Y t Y_t Yt是实值时间序列,我们依然将 A ( z ) A(z) A(z)称为特征多项式,并且类比可以知道,如果这个方程存在一个特解 X t ( 0 ) X_t^{(0)} Xt(0),则非齐次方程的通解可以表现为特解+通解的形式,也即
X t = X t ( 0 ) + ∑ j = 1 k ∑ l = 0 r ( j ) − 1 U l , j t l z j − t . X_t=X_t^{(0)}+\sum_{j=1}^k\sum_{l=0}^{r(j)-1}U_{l,j}t^{l}z_j^{-t}. Xt=Xt(0)+j=1kl=0r(j)1Ul,jtlzjt.

事实上,斐波那契数列就是典型的齐次差分方程,满足 F t − F t − 1 − F t − 2 = 0 F_{t}-F_{t-1}-F_{t-2}=0 FtFt1Ft2=0,其特征多项式为 F ( z ) = 1 − z − z 2 F(z)=1-z-z^2 F(z)=1zz2,有两个根
z 1 = − 5 + 1 2 , z 2 = 5 − 1 2 , z_1=-\frac{\sqrt 5+1}{2},\quad z_2=\frac{\sqrt 5-1}{2}, z1=25 +1,z2=25 1,
所以通解应该是 F t = U 1 z 1 − t + U 2 z 2 − t F_t=U_1z_1^{-t}+U_2z_2^{-t} Ft=U1z1t+U2z2t,又因为 F 1 = F 2 = 1 F_1=F_2=1 F1=F2=1,代入解出 U 1 , U 2 U_1,U_2 U1,U2后得到通项公式
F t = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] . F_t=\frac 1{\sqrt 5}\left[\left(\frac{1+\sqrt 5}2 \right)^n-\left(\frac{1-\sqrt 5}{2} \right)^n \right]. Ft=5 1[(21+5 )n(215 )n].

3.差分方程解的一些性质

由于我们无法保证 A ( z ) A(z) A(z)的所有根都是实根,难免有复根出现,因此我们不妨将它统一成复数表达,即 z j = ρ j e i λ j z_j=\rho_je^{{\rm i}\lambda_j} zj=ρjeiλj,这里 ρ j \rho_j ρj z j z_j zj的模长, λ j \lambda_j λj z j z_j zj的辐角,顺便将随机变量 U l , j U_{l,j} Ul,j也写成 U l , j = V l , j e i θ l , j U_{l,j}=V_{l,j}e^{{\rm i}\theta_{l,j}} Ul,j=Vl,jeiθl,j,那么通解可以表示成
X t = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 U l , j t l z j − t = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j e i θ l , j t l ρ j − t e − i λ j t = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t e i ( θ l , j − λ j t ) . X_t=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}U_{l,j}t^{l}z_j^{-t}=\sum_{j=1}^k\sum_{l=0}^{r(j)-1} V_{l,j}e^{{\rm i}\theta_{l,j}}t^l\rho_j^{-t}e^{-{\rm i}\lambda_jt}=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}e^{{\rm i}(\theta_{l,j}-\lambda _jt)}. Xt=j=1kl=0r(j)1Ul,jtlzjt=j=1kl=0r(j)1Vl,jeiθl,jtlρjteiλjt=j=1kl=0r(j)1Vl,jtlρjtei(θl,jλjt).
我们发现此时的通解并不是实值解,如果我们要将其解限制在实值上,就要将通解取为复变量的实部或虚部,以下两种都是实解的表现形式,一般我们取实部,即 cos ⁡ \cos cos的那一种。
ℜ ( ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t e i ( θ l , j − λ j t ) ) = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t cos ⁡ ( λ j t − θ l , j ) , ℑ ( ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t e i ( θ l , j − λ j t ) ) = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t sin ⁡ ( λ j t − θ l , j ) . \Re\left(\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}e^{{\rm i}(\theta_{l,j}-\lambda _jt)} \right)=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}\cos (\lambda_jt-\theta_{l,j}),\\ \Im\left(\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}e^{{\rm i}(\theta_{l,j}-\lambda _jt)} \right)=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}\sin (\lambda_jt-\theta_{l,j}). j=1kl=0r(j)1Vl,jtlρjtei(θl,jλjt)=j=1kl=0r(j)1Vl,jtlρjtcos(λjtθl,j),j=1kl=0r(j)1Vl,jtlρjtei(θl,jλjt)=j=1kl=0r(j)1Vl,jtlρjtsin(λjtθl,j).
因为 U l , j U_{l,j} Ul,j是由初值 ( X 0 , ⋯   , X p − 1 ) (X_0,\cdots,X_{p-1}) (X0,,Xp1)唯一决定的,所以作为 U l , j U_{l,j} Ul,j的模和辐角的 V l , j , θ l , j V_{l,j},\theta_{l,j} Vl,j,θl,j也是由初值唯一决定的。

接下来我们讨论解的收敛性,从通解的形式可以看出,如果 A ( z ) A(z) A(z)的根 z j z_j zj都在单位圆外,即 ∣ z j ∣ = ρ j > 1 |z_j|=\rho_j>1 zj=ρj>1,那么必定存在一个正数 α ∈ ( 1 , min ⁡ j ρ j ) \alpha\in(1,\min\limits_j\rho_j) α(1,jminρj),当 t → ∞ t\to \infty t时,
t l ρ j − t = t l ∣ α ρ j ∣ t α − t = o ( α − t ) , 即 t l ∣ α ρ j ∣ t = o ( 1 ) , t → ∞ . t^l\rho_j^{-t}=t^l\left|\frac{\alpha}{\rho_j}\right|^t\alpha^{-t}=o(\alpha^{-t}),即t^l\left|\frac\alpha{\rho_j} \right|^t=o(1),t\to \infty. tlρjt=tlρjαtαt=o(αt),tlρjαt=o(1),t.
也就是任何一个基础解都以负指数阶收敛到0(是 o ( α − t ) o(\alpha^{-t}) o(αt)),则通解作为基础解的线性组合,自然也是以负指数阶收敛到0的 o ( α − t ) o(\alpha^{-t}) o(αt)

研究这个的意义是什么呢?通解的收敛性,代表不管取什么样的初值(决定的什么样的 U l , j U_{l,j} Ul,j),随着时间的不断增加,通解都会趋向于可以忽略不计的。那么对于非齐次差分方程,它的通解是特解+齐次差分方程的通解,随着时间的推移将只与特解的性质有关,而如果特解也是收敛的,这样非齐次差分方程的通解就可以不受初值影响,最后呈现出某种规律。

从刚才的论证过程,可以发现,要想通解收敛,就必须让所有的 ρ j > 1 \rho_j>1 ρj>1。而如果有一个 ρ j = 1 \rho_j=1 ρj=1,对应的基础解就是 V l , j t l cos ⁡ ( λ j t − θ l , j ) V_{l,j}t^l\cos(\lambda_jt-\theta_{l,j}) Vl,jtlcos(λjtθl,j),呈现出某种周期性,而且必定有一个周期解为 a cos ⁡ ( λ j t ) a\cos(\lambda_jt) acos(λjt)。而如果有 ρ j < 1 \rho_j<1 ρj<1,对应的基础解就会迅速发散于无穷大,此时方程的解是无法预测的。

正因如此,我们接下来要研究的自回归方程,是一种常系数非齐次差分方程,并且它的通解是收敛的,这才有研究的意义。

回顾总结

  1. 推移算子 B \mathscr B B是作用于时间序列的, B X t = X t − 1 \mathscr BX_t=X_{t-1} BXt=Xt1,与多项式进行结合可以简便地表示时间序列的线性组合。

  2. 常系数齐次差分方程可以表示为 A ( B ) X t = 0 A(\mathscr B)X_t=0 A(B)Xt=0,这里 A ( z ) A(z) A(z)是一个关于 z z z的多项式,被称为特征多项式,有以下的表现形式。
    A ( z ) = 1 − ∑ j = 1 p a j z j . A(z)=1-\sum_{j=1}^pa_jz^j. A(z)=1j=1pajzj.
    如果我们令 a 0 = − 1 a_0=-1 a0=1,则 A ( z ) = − ∑ j = 0 p a j z j A(z)=-\sum_{j=0}^p a_jz^j A(z)=j=0pajzj

  3. 对于常系数齐次差分方程 A ( B ) X t = 0 A(\mathscr B)X_t=0 A(B)Xt=0的求解问题,如果 A ( z ) A(z) A(z) k k k个不同的根 z 1 , ⋯   , z k z_1,\cdots,z_k z1,,zk,每一个根 z j z_j zj的重数是 r ( j ) r(j) r(j),则差分方程基础解为 t l z j − t , 0 ≤ l ≤ r ( j ) − 1 t^{l}z_j^{-t},0\le l\le r(j)-1 tlzjt,0lr(j)1,通解为
    ∑ j = 1 k ∑ l = 0 r ( j ) − 1 U l , j t l z j − t = ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t e − i ( λ j t − θ l , j ) , \sum_{j=1}^k\sum_{l=0}^{r(j)-1}U_{l,j}t^lz_j^{-t}=\sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}e^{-{\rm i}(\lambda_jt-\theta_{l,j})}, j=1kl=0r(j)1Ul,jtlzjt=j=1kl=0r(j)1Vl,jtlρjtei(λjtθl,j),
    实数基础解为 V l , j t l ρ j − t cos ⁡ ( λ j t − θ l , j ) V_{l,j}t^l\rho_j^{-t}\cos(\lambda_jt-\theta_{l,j}) Vl,jtlρjtcos(λjtθl,j),实数通解为
    ∑ j = 1 k ∑ l = 0 r ( j ) − 1 V l , j t l ρ j − t cos ⁡ ( λ j t − θ l , j ) . \sum_{j=1}^k\sum_{l=0}^{r(j)-1}V_{l,j}t^l\rho_j^{-t}\cos(\lambda_jt-\theta_{l,j}). j=1kl=0r(j)1Vl,jtlρjtcos(λjtθl,j).

  4. 如果所有 ρ j > 1 \rho_j>1 ρj>1,那么通解是收敛的(以负指数阶收敛到0);如果存在 ρ j = 1 \rho_j=1 ρj=1,就存在周期解;如果存在 ρ j < 1 \rho_j<1 ρj<1,就存在爆炸解。这里 ρ j \rho_j ρj z j z_j zj的模长。

  5. 常系数非齐次差分方程的通解,是特解+齐次差分方程的通解。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值