深入探究并解决LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题

在Deepseek模型的落地应用中,我们期望它不仅能够给出准确答案,还能展示其推理过程。本文记录了我在LLamaFactory微调和测试DeepSeek蒸馏模型时遇到的思维过程展示问题,以及从问题发现到最终解决的全过程。通过对模型配置、提示模板和界面渲染的系统性优化,成功实现了蒸馏模型思考过程的直观可视化展示。


🎉进入大模型应用与实战专栏 | 🚀查看更多专栏内容


在这里插入图片描述

问题背景

最近在本地环境中部署了DeepSeek-R1-Distill-Qwen-1.5B,即由Qwen2.5-Math-1.5B基础模型蒸馏出来的具有思维能力的模型。这是

微调DeepSeek-14B(假设这是一个特定的大规模语言模型)以改进其生成能力是一个复杂的过程,特别是当你想要优化模型产生的“思维”(即推理过程或中间思考步骤)。在这个背景下,“思维”通常是指从输入到最终输出之间的逻辑路径或者解释。 为了有效地将这种功能加入到您的模型中,确保它能够理解和生成包含明确标记的思维条的数据,您可以考虑以下方案: ### 在训练数据中添加特殊标签 如果您希望模型能够在生成文本的同显式地表示出它的思维方式,则可以在训练集中引入如`<think>...</think>`这样的XML风格标签来包裹需要作为‘思维’内容的部分。例如: ``` Input: 解释一下为什么太阳会发光? Output: 太阳之所以会发出光是因为内部发生的核聚变反应。<think>这里涉及到物理学知识:氢原子在极高温度下结合形成氦释放能量。</think> ``` 这样做可以让模型学习如何区分普通文本和特别指定为"思考"的内容,学会按照这种方式组织自己的表达。 #### 准备带标注的数据集 准备足够的样本来覆盖各种类型的查询及其相应的思考流程非常重要。这不仅包括科学事实、数学计算等常见领域的问题解答,还应该涵盖更广泛的话题范围以便让模型可以泛化应用此技能于未曾见过的情境之中。 另外还需要注意的是,在实际操作过程中可能会遇到一些挑战,比如保证足够高质量的手动构建示例;以及避免过度拟合等问题。因此建议逐步迭代地调整和完善这个机制直到达到满意的效果为止。 --
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊城迷鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值