图像的低频,中频,高频信息含义?

        看很多图像处理的博文,都会说图像的主要成分是低频信息,它形成了图像的基本灰度等级,对图像结构的决定作用较小;中频信息决定了图像的基本结构,形成了图像的主要边缘结构;高频信息形成了图像的边缘和细节,是在中频信息上对图像内容的进一步强化。我有点纳闷,图像不就是一堆像素点构成的三维矩阵吗?跟频率有啥关系!

        针对这个问题,又查了不少网文,解释的也都各不相同。例如,
“初学的时候,你可以把高中低这个度量和图像上相邻点的灰度差大小对等起来”。

“感性上来讲,图像越杂乱的部分,频率越高,例如边界;图像越柔和的部分,频率越低,比如一大片天空。换句话来讲就是梯度越大的地方,频率越高。”。

“频率指的是灰度值的变化频率。低频信息就是指灰度值变化频率慢的信息,那就是连续而相近的亮度,这些信息无疑是一张图片里的大色块,也就形成了图像的基本灰度等级。中频则灰度变化较快,而图像中物体的边缘处就是这种灰度变化较快的区域,所以是主要的边缘结构。高频的话灰度变化就很快,应当对应图像里的边缘、细节甚至噪点。”

“图像的频率:灰度值变化剧烈程度的指标,是灰度在平面空间上的梯度。

(1)什么是低频?
      低频就是颜色缓慢地变化,也就是灰度缓慢地变化,就代表着那是连续渐变的一块区域,这部分就是低频. 对于一幅图像来说,除去高频的就是低频了,也就是边缘以内的内容为低频,而边缘内的内容就是图像的大部分信息,即图像的大致概貌和轮廓,是图像的近似信息。

(2)什么是高频?

     反过来, 高频就是频率变化快.图像中什么时候灰度变化快?就是相邻区域之间灰度相差很大,这就是变化得快.图像中,一个影像与背景的边缘部位,通常会有明显的差别,也就是说变化那条边线那里,灰度变化很快,也即是变化频率高的部位.因此,图像边缘的灰度值变化快,就对应着频率高,即高频显示图像边缘。图像的细节处也是属于灰度值急剧变化的区域,正是因为灰度值的急剧变化,才会出现细节。
      另外噪声(即噪点)也是这样,在一个像素所在的位置,之所以是噪点,就是因为它与正常的点颜色不一样了,也就是说该像素点灰度值明显不一样了,,也就是灰度有快速地变化了,所以是高频部分,因此有噪声在高频这么一说。

      其实归根到底,是因为我们人眼识别物体就是这样的.假如你穿一个红衣服在红色背景布前拍照,你能很好地识别么?不能,因为衣服与背景融为一体了,没有变化,所以看不出来,除非有灯光从某解度照在人物身上,这样边缘处会出现高亮和阴影,这样我们就能看到一些轮廓线,这些线就是颜色(即灰度)很不一样的地方.

实际上,只有当进行傅里叶变换后才有低频和高频之分,低频一般是大范围大尺度的信息,也就是背景,而高频反映的是小范围细节信息。应用上对应高频滤波和低频滤波,如果你想得到局部信息,则相应要保留高频部分,滤掉低频部分,反之,若你想得到总体趋势变化,则相应要保留低频部分,滤掉高频部分。

从物理效果看,傅立叶变换是将图像从空间域转换到频率域,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。

对图像而言:

  • 低频分量(低频信号):代表着图像中亮度或者灰度值变化缓慢的区域,也就是图像中大片平坦的区域,描述了图像的主要部分,是对整幅图像强度的综合度量。
  • 高频分量(高频信号):对应着图像变化剧烈的部分,也就是图像的边缘(轮廓)或者噪声以及细节部分。 主要是对图像边缘和轮廓的度量,而人眼对高频分量比较敏感。之所以说噪声也对应着高频分量,是因为图像噪声在大部分情况下都是高频的。

图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,如下图所示,右图为左图的频谱图。

 注意:频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际是上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。

傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要用梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图。

我的一点理解

我们在学习图像频率滤波,能看出来,频域上操作的效果比空间域上操作的效果好。但是很难理解为什么要这么做。其实可以这么理解,例如,有一幅含噪声的图像,若对图像进行空间域操作,使用均值滤波,那么噪声未知的像素点会被周围像素点求均值取代,可能效果会比原图好一点,但是这对原有图像的有些信息造成损失(像素取均值)。

那么将图像在频率域上进行操作,噪声在频率上反映是高频信息,通过设置相应的滤波器,滤除噪声。然后从频域还原回来。此时图像的有用的信息不会损失。

参考:

https://zhidao.baidu.com/question/230575188.html

https://blog.csdn.net/charlene_bo/article/details/70877999

https://blog.csdn.net/zaishuiyifangxym/article/details/89452123

### 频域特征提取方法 #### 一、频域中的高低频定义及其意义 在信号处理领域,通过快速傅里叶变换(FFT),可以将时域上的数字信号转换成频域表示形式[^1]。在此过程中,不同频率范围内的成分被分离出来: - **低频分量**:代表了信号中变化较为缓慢的部分,在图像处理中通常指代那些亮度或灰度值变动不大的区域,这些部分构成了图像的基础结构或是背景信息[^4]。 - **高频分量**:则反映了信号内部快速波动的信息,对于图片来说意味着边缘、纹理以及其他细节点;值得注意的是,由于大多数类型的随机干扰都表现为高频特性,因此这部分也可能包含了噪声数据[^2]。 至于所谓的“中频”,并没有严格意义上的界定标准,一般是指介于上述两者之间的那一段频率区间内所对应的信号特点。这类信号既不是特别平稳也不是极其突变的,可能涉及到一些局部性的模式或者是特定尺度下的形状特征等。 #### 二、基于频域的特征提取技术 为了有效地从复杂多样的原始输入当中抽取出有意义的表征向量用于后续的任务(比如分类识别),往往需要针对不同的应用场景选取合适的方法来操作各个层次上的频率响应: ##### (一)利用滤波器组实现带宽选择性抽取 构建一组具有不同截止频率特性的线性相位FIR/IIR型滤波器阵列,分别作用于待测对象之上从而获取各自限定范围内经过筛选后的输出序列作为新的观测样本集。这种方法能够灵活调整关注的重点并减少冗余计算开销的同时保持较高的精度水平。 ##### (二)应用离散小波变换(DWT) 相比于传统的STFT方式,DWT可以在多个分辨率级别上提供更加精细的时间—尺度映射关系图谱,有助于捕捉到更深层次的空间分布规律以及瞬态行为表现。尤其适合用来刻画非稳态过程或者存在明显周期性振荡现象的目标实体。 ```python import pywt coeffs = pywt.wavedec(data, 'db4', level=5) # 使用Daubechies wavelet进行五级分解 cA5, cD5, cD4, cD3, cD2, cD1 = coeffs # 获取近似系数和各级细节系数 ``` ##### (三)执行主成分分析(PCA)/独立组件分析(ICA) 当面对高维空间里的多元统计变量集合时,这两种降维手段可以帮助揭示潜在的数据内在关联性和独立源贡献比例情况,进而辅助确定哪些维度携带了最重要的变异信息即所谓的关键属性指标。 ```matlab % MATLAB PCA Example [coeff,score,latent] = pca(meas); biplot(coeff(:,1:2),'Scores',score(:,1:2)); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值