Depth Estimation 论文及代码汇总,持续更新中~~

本文汇总了2024年关于深度估计的最新研究,包括Depth Anything、PatchFusion等方法。这些方法旨在解决高分辨率图像的深度估计、数据扩增、语义信息融合等问题,提升模型的泛化能力和鲁棒性。各方法通过不同的技术手段,如一致性训练、补丁融合、跨光谱融合等,实现了在不同场景下的深度估计性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载请注明作者和出处:http://blog.csdn.net/john_bh/

** Depth Estimation 论文及代码汇总,持续更新中~~**

1. Data

NYUv2
Middlebury
RGBDD

2. Metrics

3. 比赛

4. Paper List

4.1 Survey

4.2 Papers

2024

  1. Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data — CVPR_2024code

    本文提出了非常实用鲁棒的单目深度估计方法—Depth Anything。文章的目标是不追求新技术模块的情况下,构建一个简单有效的基础模型,用于处理任意环境的任何图片。为此目的设计的数据引擎,可以搜集和自动标注大规模未标注的数据,极大地扩大了数据集,拥有大量数据集能够减少泛化误差。作者研究了两种简单有效的扩大数据的策略,首先,利用数据增强工具创建一个更具挑战性的优化目标,该目标迫使模型积极寻求额外的视觉信息并获得鲁棒的表示;其次,开发了一种辅助监督来强制模型从预训练的编码器继承丰富的语义先验信息。 广泛评估了策略的零样本能力,包括了六个公共数据集和随机捕获的照片。Depth Anything展示了令人印象深刻的泛化能力。此外,通过使用来自NYUv2和KITTI的度量深度信息对其进行微调,达到了新的SOTA。
    在这里插入图片描述

  2. PatchFusion: An End-to-End Tile-Based Framework for High-Resolution Monocular Metric Depth Estimation — CVPR 2024code

    解决的问题:高分辨率输入的单幅图像 metric 深度估计 主流的深度估计模型难以适应当今消费相机和设备中常见的不断提高的分辨率。现有的高分辨率策略显示出前景,但它们往往面临局限性,从错误传播到高频细节的丢失。
    如果采用全局下采样方式,该步骤的输出本质上是粗略的,而精细的高频细节会以全局一致性为代价而丢失,提出了一种逐片融合网络,通过高级特征指导,将全局一致的粗糙预测与更精细、不一致的tiled 预测融合在一起的;
    如果采用patch-wise 方法可能导致尺度偏移的预测和补丁之间的波动,从而导致明显的补丁伪影,提出一种全局到局部模块,为融合

### 关于Self-Supervised Monocular Depth Estimation论文的复现方法与代码 #### 复现方法概述 为了成功复现Self-Supervised Monocular Depth Estimation的相关工作,通常需要遵循以下几个方面的要求: 1. **数据准备** 自监督单目深度估计的核心在于利用未标注的数据进行训练。例如,《PackNet:3D Packing for Self-Supervised Monocular Depth Estimation》提到使用视频序列和相机运动信息作为输入[^2]。因此,可以选择公开可用的数据集如KITTI、Cityscapes或DDAD(如果适用),并确保数据预处理阶段能够提取连续帧及其对应的相机姿态。 2. **网络架构设计** 不同的论文采用了不同的网络结构来提升深度估计的效果。例如: - DIFFNet引入了高分辨率编码器,并通过注意力机制优化跳接连接[^1]。 - HR-Depth则专注于增强 shortcut 连接的质量以及采用 fSE 特征融合算子以更好地保留语义和空间信息[^4]。 在实际复现时,可以根据目标需求选择合适的网络结构或者尝试结合多种技术特点。 3. **损失函数定义** 损失函数的设计对于自监督学习至关重要。常见的做法包括但不限于光度一致性损失 (photometric consistency loss),几何正则化项等。特别值得注意的是,《Digging Into Self-Supervised Monocular Depth Estimation》一文中提到了几种改进措施——最小重投影损失、自适应遮罩损失及全分辨率多尺度采样方法,这些都可以显著改善最终结果[^3]。 4. **实验环境配置** 确保开发环境中安装有必要的依赖库版本匹配(比如PyTorch/TensorFlow)。同时也要注意硬件资源是否满足大规模神经网络训练的需求。 #### 示例代码片段 以下是基于PyTorch框架的一个简单示例,展示如何构建基础版的自监督单目深度估计流程的一部分: ```python import torch import torch.nn as nn from torchvision import models class Encoder(nn.Module): def __init__(self): super(Encoder, self).__init__() resnet = models.resnet18(pretrained=True) layers = list(resnet.children())[:8] self.encoder = nn.Sequential(*layers) def forward(self, x): return self.encoder(x) class Decoder(nn.Module): def __init__(self): super(Decoder, self).__init__() # Define decoder architecture here... def forward(self, x): pass # Implement decoding logic def photometric_loss(img1_warped, img2): """Compute photometric reconstruction error.""" l1_loss = torch.abs(img1_warped - img2).mean() ssim_loss = SSIM()(img1_warped, img2).mean() # Assume an implemented SSIM function exists. total_loss = 0.85 * ssim_loss + 0.15 * l1_loss return total_loss # Instantiate encoder & decoder... encoder = Encoder().cuda() decoder = Decoder().cuda() # Example usage during training loop: for batch_data in dataloader: imgs, poses = batch_data['imgs'], batch_data['poses'] features = encoder(imgs.cuda()) depths_pred = decoder(features) # Predicted inverse depth maps. warped_img = warp_image(depths_pred, poses) # Function to perform warping based on predicted depths and camera poses. loss_value = photometric_loss(warped_img, target_img) optimizer.zero_grad() loss_value.backward() optimizer.step() ``` 上述代码仅为示意性质,具体实现还需参照原论文中的详细算法描述调整参数设定与功能模块。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值