一:任务描述
本关任务:编写程序,多维度分析葡萄酒数据。
相关知识
葡萄酒评论分析报告描述
文件 winemag-data.csv
包含 编号、国家、描述、评分、价格、省份
等 6列
和12974
行葡萄酒评论的数据。数据格式如下所示:
number,country,description,points,price,province 30,France,"Red cherry fruit comes laced with....",86,15,Beaujolais 50,Italy,"This blend of Nero Avola and Syrah....",86,15,Sicily 100,US,"Fresh apple, lemon and pear flavors....",88,18,New York
通过分析这些数据,用户可以根据产地、评份、价格等挑选适合自己的葡萄酒,商家可以分析消费者的购买行为习惯,可以更加准确地提供适合市场的产品,精准定位客户。
请读取文件中的数据,完成以下任务:
输入 价格最高
,略过价格缺失的数据,输出价格最高的二十款葡萄酒的编号、出产国、评分和价格,按价格降序输出
输入 葡萄酒评分
,统计各个评分的葡萄酒数量是多少?按评分从低到高顺序输出各个评分的葡萄酒数量的列表;输出拥有葡萄酒数量最多的评分和数量;输出拥有葡萄酒数量最多的评分的葡萄酒的平均价格
输入其他时,输出 输入错误
编程要求
根据提示,在右侧编辑器补充代码,完成葡萄酒评论分析报告代码编写。
测试说明
平台会对你编写的代码进行测试:
示例仅为格式展示,与测试用例无关
测试输入1: 价格最高
预期输出1:
[[80290, 'France', 88, 3300.0], [15840, 'France', 96, 2500.0], ...... [69210, 'France', 93, 450.0], [21720, 'France', 95, 440.0]]
测试输入2: 葡萄酒评分
预期输出2:
[[80, 38], [81, 71], ...... [95, 140], [96, 50], [97, 26], [98, 8], [99, 3]]
[86, 1743]
31.02
import pandas as pd
import math
# 定义符号常量,用于索引,使之具有清晰的语义
NUMBER = 0
COUNTRY = 1
POINTS = 3
PRICE = 4
def csv_to_ls(file):
"""接收文件名为参数,用pandas读取文件中的数据,数据部分转为二维列表类型,返回二维列表。"""
wine_list = pd.read_csv(file).values.tolist()
return wine_list
def top_20_price(wine_list):
"""接收列表格式的葡萄酒数据参数,返回价格最高的二十款葡萄酒的编号、出产国、评分和价格,按价
格降序输出。
@参数 wine_list:葡萄酒数据,列表类型
需要注意的是价格可能有缺失值,此时该数据为nan
if math.isnan(x) == False可用于判定x的值是不是nan
nan的数据类型是float,不可以直接用字符串判定方法。
"""
# 此处补充你的代码
def amount_of_point(wine_list):
"""接收列表格式的葡萄酒数据参数,返回每个评分的葡萄酒数量,忽略没有评分的数据
例如[...[84, 645], [85, 959],...]表示得分为84的葡萄酒645种,得分85的葡萄酒有959种。
@参数 wine_list:葡萄酒数据,列表类型
"""
# 此处补充你的代码
def most_of_point(amount_of_points):
"""接收每个评分的葡萄酒数量的列表为参数,返回获得该分数数量最多的评分和数量的列表。
@参数 amount_of_points:每个评分的葡萄酒数量,列表类型
"""
# 此处补充你的代码
def avg_price_of_most_point(wine_list, most_of_points):
"""接收列表格式的葡萄酒数据和获得最多的评分及数量的列表为参数
忽略缺失价格的数据,返回这个分数的葡萄酒的平均价格,保留2位小数。
@参数 wine_list:葡萄酒数据,列表类型
@参数 most_of_points:获得最多的评分及数量,列表类型
"""
# 此处补充你的代码
def judge(txt):
"""接收一个字符串为参数,根据参数值调用不同函数完成任务"""
filename = 'data/winemag-data.csv'
wine = csv_to_ls(filename)
if txt == '价格最高':
print(top_20_price(wine)) # 价格最高的二十款葡萄酒的编号、出产国、评分和价格,按价格降序输出
elif txt == '葡萄酒评分':
amount_point = amount_of_point(wine)
most_point = most_of_point(amount_point)
print(amount_point) # 各个评分的葡萄酒数量
print(most_point) # 拥有葡萄酒数量最多的评分和数量
print(avg_price_of_most_point(wine, most_point)) # 拥有葡萄酒数量最多的评分的葡萄酒的平均价格
else:
print('输入错误')
if __name__ == '__main__':
text = input()
judge(text)
第2关:葡萄酒评论分析报告——平均分排序和评分最高
import pandas as pd
import math
# 定义符号常量,用于索引,使之具有清晰的语义
NUMBER = 0
COUNTRY = 1
DESCRIPTION = 2
POINTS = 3
PRICE = 4
def csv_to_ls(file):
"""接收文件名为参数,用pandas读取文件中的数据,数据部分转为二维列表类型,返回二维列表。"""
wine_list = pd.read_csv(file).values.tolist()
return wine_list
def country_ls(wine_list):
"""接收列表格式的葡萄酒数据为参数,略过标题行,返回不重复的国家名列表,按字母表升序排序,
若国家名数据缺失,略过该条数据,返回值中不包含空字符串元素。
@参数 wine_list:葡萄酒数据,列表类型
"""
country_list = []
for x in wine_list:
if x[COUNTRY] not in country_list:
country_list.append(x[COUNTRY])
country_list.sort()
# print(country_list)
return country_list
def avg_point_sort(wine_list, country):
"""接收列表格式的葡萄酒数据和国家名列表为参数,计算每个国家的葡萄酒的平均得分,
返回值为国家名和得分的列表,按评分由高到低降序排列。
@参数 wine_list:葡萄酒数据,列表类型
@参数 country:国家名,列表类型
"""
# 此处补充你的代码
score=[]
for i in range
def top_10_point(wine_list):
"""接收列表格式的葡萄酒数据参数,返回评分最高的十款葡萄酒的编号、出产国、评分和价格,按评
分降序输出。
需要注意的是评分可能有缺失值,此时该数据为nan
if math.isnan(x) == False可用于判定x的值是不是nan
nan的数据类型是float,不可以直接用字符串判定方法。
@参数 wine_list:葡萄酒数据,列表类型
"""
# 此处补充你的代码
def judge(txt):
"""接收一个字符串为参数,根据参数值调用不同函数完成任务"""
filename = 'data/winemag-data.csv'
wine = csv_to_ls(filename)
country = country_ls(wine)
if txt == '平均分排序':
print(avg_point_sort(wine, country)) # 每个国家的葡萄酒的平均得分降序输出
elif txt == '评分最高':
print(top_10_point(wine)) # 评分最高的十款葡萄酒的编号、出产国、评分和价格,按评分降序输出
else:
print('输入错误')
if __name__ == '__main__':
text = input()
judge(text)
第3关:葡萄酒评论分析报告——价格最高和葡萄酒评分
import pandas as pd
import math
# 定义符号常量,用于索引,使之具有清晰的语义
NUMBER = 0
COUNTRY = 1
POINTS = 3
PRICE = 4
def csv_to_ls(file):
"""接收文件名为参数,用pandas读取文件中的数据,数据部分转为二维列表类型,返回二维列表。"""
wine_list = pd.read_csv(file).values.tolist()
return wine_list
def top_20_price(wine_list):
"""接收列表格式的葡萄酒数据参数,返回价格最高的二十款葡萄酒的编号、出产国、评分和价格,按价
格降序输出。
@参数 wine_list:葡萄酒数据,列表类型
需要注意的是价格可能有缺失值,此时该数据为nan
if math.isnan(x) == False可用于判定x的值是不是nan
nan的数据类型是float,不可以直接用字符串判定方法。
"""
# 此处补充你的代码
list1=[]
for i in wine_list:
if math.isnan(float(i[-2]))==False:
list1.append(i)
list2=sorted(list1,key=lambda x:x[-2],reverse=True)
list3=[]
count=1
for k in list2:
if count<21:
list3.append([k[-6],k[-5],k[-3],k[-2]])
count+=1
return list3
def amount_of_point(wine_list):
"""接收列表格式的葡萄酒数据参数,返回每个评分的葡萄酒数量,忽略没有评分的数据
例如[...[84, 645], [85, 959],...]表示得分为84的葡萄酒645种,得分85的葡萄酒有959种。
@参数 wine_list:葡萄酒数据,列表类型
"""
# 此处补充你的代码
score_list = []
list1 = []
count = 0
for x in wine_list:
if x[-3] not in score_list:
score_list.append(x[-3])
score_list.sort()
for i in score_list:
count = 0
for j in wine_list:
if i == int(j[-3]):
count += 1
list1.append([i, count])
return list1
def most_of_point(amount_of_points):
"""接收每个评分的葡萄酒数量的列表为参数,返回获得该分数数量最多的评分和数量的列表。
@参数 amount_of_points:每个评分的葡萄酒数量,列表类型
"""
# 此处补充你的代码
list1 = sorted(amount_of_points, key=lambda x: x[1], reverse=True)
return list1[0]
def avg_price_of_most_point(wine_list, most_of_points):
"""接收列表格式的葡萄酒数据和获得最多的评分及数量的列表为参数
忽略缺失价格的数据,返回这个分数的葡萄酒的平均价格,保留2位小数。
@参数 wine_list:葡萄酒数据,列表类型
@参数 most_of_points:获得最多的评分及数量,列表类型
"""
# 此处补充你的代码
sum = 0
m = 0
for i in wine_list:
if most_of_points[0] == int(i[-3]):
if math.isnan(float(i[-2])) == False:
sum += float(i[-2])
m += 1
return round(sum / m, 2)
def judge(txt):
"""接收一个字符串为参数,根据参数值调用不同函数完成任务"""
filename = 'data/winemag-data.csv'
wine = csv_to_ls(filename)
if txt == '价格最高':
print(top_20_price(wine)) # 价格最高的二十款葡萄酒的编号、出产国、评分和价格,按价格降序输出
elif txt == '葡萄酒评分':
amount_point = amount_of_point(wine)
most_point = most_of_point(amount_point)
print(amount_point) # 各个评分的葡萄酒数量
print(most_point) # 拥有葡萄酒数量最多的评分和数量
print(avg_price_of_most_point(wine, most_point)) # 拥有葡萄酒数量最多的评分的葡萄酒的平均价格
else:
print('输入错误')
if __name__ == '__main__':
text = input()
judge(text)